High Energy, Cosmology and Astroparticle Physics


Research Topics

Phenomenology of particle physics
Researchers in this area, which bridges theoretical physics (such as quantum field theory and theories of the structure of spacetime) and experimental particle physics, are exploring: neutrino phenomenology; astroparticle physics; phenomenology at the Large Hadron Collider (LHC) and other high-energy colliders; and flavor physics.
The study of the large-scale structure and the evolution of the universe has in the last few years entered a qualitatively new phase, driven by a host of experimental results. Topics being studied at ICTP include clustering dark energy, non-gaussianity, and eternal inflation.
String and higher dimensional theories
This field combines quantum mechanics and general relativity into a quantum theory of gravity that attempts to describe all the known natural forces and matter in a mathematically complete system. In string theory, the electrons and quarks inside an atom are vibrational modes of one-dimensional extended objects, relativistic strings. ICTP's string theorists are exploring holographic QCD and holographic hydrodynamics; topological string theory; spin-2 particles; and the spectrum of a class of brane solutions in minimal gauged supergravity in six dimensions.
Experimental Particle Physics
The Udine/ICTP ATLAS group, supported by the INFN, is part of the ATLAS experiment at the CERN Large Hadron Collider (LHC). The group has made (and is making) significant contributions to several measurements and observations involving the top quark, the Higgs boson and searches for new physics. The group is also strongly involved in science outreach and public engagement. In addition, it participates in the development of detectors for the LHC upgrade, as well as Monte Carlo simulation/validation and computing performance. ICTP joined forces with the University of Udine ATLAS group in 2008.