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Preface

Study of black holes in string theory has revealed a beautiful and precise
connection between the physics of quantum black holes and topics in number
theory and geometry. The aim of these lectures is to outline these connections
for an audience of mathematicians through illustrative examples starting with
basic concepts and motivations from physics.

Our goal is to give a sufficiently detailed introduction to some of the im-
portant concepts such as quantum ensembles, entropy, quantum fields, black
holes, event horizon, supersymmetry, conformal field theory. Where possible,
we use simple illustrative examples with explicit computations which capture
the essential concepts.

Quantum Black Holes

A black hole is at once the most simple and the most complex object.

It is the most simple in that it is completely specified by its mass, spin,
and charge. This remarkable fact is a consequence of a the so called ‘No
Hair Theorem’. For an astrophysical object like the earth, the gravitational
field around it depends not only on its mass but also on how the mass is
distributed and on the details of the oblate-ness of the earth and on the
shapes of the valleys and mountains. Not so for a black hole. Once a star
collapses to form a black hole, the gravitational field around it forgets all
details about the star that disappears behind the even horizon except for
its mass, spin, and charge. In this respect, a black hole is very much like a
structure-less elementary particle such as an electron.

And yet it is the most complex in that it possesses a huge entropy. In
fact the entropy of a solar mass black hole is enormously bigger than the
thermal entropy of the star that might have collapsed to form it. Entropy
gives an account of the number of microscopic states of a system. Hence,
the entropy of a black hole signifies an incredibly complex microstructure.
In this respect, a black hole is very unlike an elementary particle.

Understanding the simplicity of a black hole falls in the realm of classical
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gravity. By the early seventies, full fifty years after Schwarzschild, a reason-
ably complete understanding of gravitational collapse and of the properties
of an event horizon was achieved within classical general relativity. The final
formulation began with the singularity theorems of Penrose, area theorems
of Hawking and culminated in the laws of black hole mechanics.

Understanding the complex microstructure of a black hole implied by
its entropy falls in the realm of quantum gravity and is the topic of present
lectures. Recent developments have made it clear that a black hole is ‘simple’
not because it is like an elementary particle, but rather because it is like
a statistical ensemble. An ensemble is also specified by a few conserved
quantum numbers such as energy, spin, and charge. The simplicity of a
black hole is no different than the simplicity that characterizes a thermal
ensemble.

Quantum properties of black holes are of great significance for contem-
porary research in quantum gravity1. One of the outstanding problems in
twentieth century physics is to develop a consistent framework of Quantum
Gravity that unifies General Relativity with Quantum Mechanics. In any
purported theory of quantum gravity, it is essential that there is a way to
understand the quantum properties of black holes in statistical terms consis-
tent with Boltzman relation.

Superstring theory is the most promising candidate for such a unification.
In superstring theory there has been important progress in understanding the
entropy of a class of black holes in terms of its microstates consistent with the
Boltzmann relation. In the absence of direct experimental probes to explore
the theory at the required energies, the quantum structure of black holes
provides a very valuable window into the short-distance structure of quatum
gravity.

1Classical black holes are also of enormous importance in astrophysics, especially after
the recent detection of gravitational waves emanating from a pair of black holes zzz.
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We summarize below how the black hole connects quantum mechanics
with general relativity.

Quantum Gravity

Quantum Mechanics ↔ General Relativity
Statistical Mechanics ↔ Thermodynamics
Quantum Ensemble ↔ Entropy

Enumerative Geometry ↔ Black Hole
Hilbert Space ↔ Spacetime Geometry

Modular Forms ↔ Hardy-Ramanujan-Rademacher
Conformal Field Theory ↔ Anti de Sitter Spacetime

Table 1: Quantum Gravity

A Physics-Maths Dictionary

We give below a ‘dictionary’ for some of the key physical concepts.

Physical system ↔ Hilbert space H
State ↔ Vector |ψ〉

Observable ↔ Self-adjoint operator A
Conserved observable ↔ [H,A] = 0

Quantum number ↔ Eigenvalue α
Symmetry ↔ Group

Lorentz group ↔ SO(1, d)
Poincaré group ↔ ISO(1, d) = R1,d o SO(1, d)
Supersymmetry ↔ Supergroup

Supersymmetry algebra ↔ Z2-graded Lie algebra

Table 2: Dictionary



Chapter 1

Quantum Mechanics

Perhaps the most important physical principle is the Atomic Hypothesis
which states that all physical processes can be understood in terms of motion
of ‘atoms’. The notion of an ‘atom’ as the indivisible unit of matter has
evolved over the centuries. In the past, an atom signified a particle like a
dust particle; in early twentieth century it signified an atom like the hydrogen
atom; now it signifies an elementary particle like an electron or a photon.
Quantum mechanics is the framework for describing the dynamical motion
of atoms interacting with each other.

From a modern perspective, an elementary particle is best understood as
the indivisible ‘quantum’ of energy of a quantum field. Thus, a photon is the
quantum of the electromagnetic field and the electron is the quantum of a
Dirac electron field. From this perspective, the atomic hypothesis can now
be recast to state that all physical processes can be understood in terms of
dynamics of quantum fields.

The theory of quantum fields has proved to be an immensely successful
framework for describing all known non-gravitational physical processes over
a very broad range of distance scales including all of chemistry, all of atomic
and nuclear physics, all the way to very short distances probed in the Large
Hadron Collider. It is hardly possible to explain quantum field theory in a
few lectures. See for a course taught by physicists aimed at mathematicians.

From a pedagogical point of view, it is possible to explain a large part
of quantum field theory by studying a much simpler quantum mechanical
system–the quantum harmonic oscillator. One can go surprisingly far by
thinking of a quantum field as a collection of quantum oscillators and un-
derstand most of the essential ideas underlying quantum field theory. As we
explain in §2, various Fourier modes of a quantum field perform ‘harmonic
motion’; thus a quantum field be viewed as a collection of quantum harmonic
oscillators interacting with each other. For this reason, a quantum oscilla-
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1.1. AXIOMS OF QUANTUM MECHANICS 5

tor is a system of fundamental importance in physics. This is the point
of view that we will develop in these lectures. It turns out that quantum
oscillators are also the simplest way to illustrate many of the interesting con-
nections between physics and topics in combinatorics, enumerative geometry,
and number theory.

1.1 Axioms of Quantum Mechanics

Quantum mechanics is a framework for describing the dynamics or equiva-
lently the time evolution of an isolated physical system whose parts may be
dynamically interacting with each other. An isolated physical system can be
a single elementary particle or a collection of atoms in a star or the air in
this room.

1. The state of every isolated ‘physical system’ S is represented by a vector
|ψ〉 in a Hilbert spaceH with unit norm 〈ψ|ψ〉 = 11. Two states related
by a phase multiplication are physically equivalent, hence |ψ〉 ∼ eiθ|ψ〉.

2. Every observable of the physical system is represented by a self-adjoint
operator on H.

3. There is a preferred observable H for every system called the Hamilto-
nian of the system which measures the total energy of the system.

4. The time evolution of a physical observable O(t) is determined by the
Heisenberg equation

(1.1) i
dA(t)

dt
= −[H,A(t)] ,

where the commutator of two operators A and B is defined as usual by

(1.2) [A,B] := AB −BA .

This equation can be readily solved by defining the time-evolution op-
erator U(t):

(1.3) U(t) := e−iHt , i
dU(t)

dt
= [H,U(t)] , U(0) = 1 .

1In Dirac’s notation commonly used in physics literature, the inner product of two
vectors |φ〉 and |ψ〉 is denoted by 〈φ|ψ〉. We explain this notation in the next subsection.
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Then the time-evolution of the observerable is implemented by the
adjoint action of a unitary operator:

(1.4) A(t) = U †(t)A(0)U(t) .

This implies that the time evolution in quantum mechanics is unitary.
It is evident from (1.1) that the Hamiltonian is independent of time
and is ‘conserved’ because it commutes with itself. This corresponds to
the conservation of energy in the physical system under consideration2.

5. If the system is in a state |ψ〉 which is an eigenvector of an observable
A with eigenvalue α, then a physical measurement of the observable
yields a number equal to that eigenvalue with unit probability . Since
the observable is self-adjoint, A† = A, all its eigenvalues {αi} are real.

Comment 1: Consider two non-interacting systems S1 and S2 with their
respective Hilbert spaces H1 and H2 and Hamiltonians H1 and H2. For the
combined system of S = S1

⋃
S2, the Hilbert space isH = H1⊗H2. The total

Hamiltonian is H = 1⊗H1 +H2⊗1 which is often written as H = H1 +H2.
If the two systems are ‘interacting’ then the total Hilbert space can no longer
be thought of as a product space.

Comment 2: A state |ψ〉 may not be an eigenstate of the observable A. In
this case, the result of a measurement can yield any of the eigenvalues of A.
If Pi is the projection operator onto the eigen-subspace with eigenvalues αi,
then the probability of obtaining αi as the result of a measurement is given
by the expectation value 〈ψ|Pi|ψ〉. After the measurement, the state |ψ〉
‘collapses’ onto the state Pi|ψ〉. The measurement axiom is one of the most
subtle and much debated axioms especially because of the need for a collapse
of the state after a measurement. In a more satisfactory formulation, it should
be possible to describe the measurement process entirely in terms of a unitary
evolution of the combined system including the measuring apparatus.

Comment 3: Consider a set of mutually commuting self-adjoint operators
{A(1), A(2), . . . , A(n)}. Since they are commuting, they can be diagonalized
simultaneously. Such a set of operators is called a complete set of commuting
observables if every state |ψ〉 ∈ H can be uniquely labelled by the eigenvalues
of these operators as |ψ〉 = |α(1), α(2), . . . , α(3)〉.

2The energy E in a given eigenstate |E〉 of the Hamilotonian is the eigenvalue of the
Hamiltonian. The Hamiltonian is assumed to be a bounded operator so that E ≥ E0.
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1.2 A Two-state System

To illustrate the essential ideas of quantum mechanics, we consider a par-
ticularly simple physical system whose Hilbert space is two-dimensional and
whose Hamiltonian in the diagonal basis is given by

(1.5) H = E

(
1 0
0 −1

)
.

which by itself furnishes a complete set of commuting observables. Hence,
we label the orthonormal basis vectors by (the sign of) their H eigenvalues

(1.6) |+〉 =

(
1
0

)
, |−〉 =

(
0
1

)
.

A general state vector with unit norm can thus be represented by

(1.7) |ψ〉 = a|+〉+ b|−〉 with |a|2 + |b|2 = 1 .

If we measure the energy of the system in identically prepared copies all in
the state |ψ〉), then we will obtain the result E with probability |a|2 and −E
with probability |b|2. Since |ψ〉 has unit norm, probabilities add up to one.

In Dirac’s notation, the column vector |ψ〉 is referred to as the ket vector

(1.8) |ψ〉 =

(
a
b

)
the Hermitian conjugate row vector is referred to as the bra vector.

(1.9) 〈ψ| =
(
a∗ b∗

)
The inner product of two vectors

(1.10) |ψ〉 =

(
a
b

)
, |φ〉 =

(
c
d

)
in H is then denoted by the bracket :

(1.11) 〈φ|ψ〉 =
(
c∗ d∗

)( a
b

)
= c∗a+ d∗b.

One can denote the usual matrix multiplication of a column vector and a
complex conjugated row vector by

(1.12) |ψ〉〈φ| =
(
a
b

)(
c∗ d∗

)
=

(
ac∗ ad∗

bc∗ bd∗

)
.



8 CHAPTER 1. QUANTUM MECHANICS

An orthonormal basis of vectors {|i〉} satisfies the orthonomality

(1.13) 〈i|j〉 = δij

and the completeness relation

(1.14)
∑
i

|i〉〈i| = 1 .

Any observable A of the two-state system can be expressed as a linear
combination with real coefficients of the identity 1 and the three self-adjoint
Pauli spin matrices {σi}, (i = 1, 2, 3) with the matrix reprentation

(1.15) σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Consider for example, the observer A = σ1 with eignevectors

| ↑〉 =
1√
2

(|+〉+ |−〉) ; A| ↑〉 = | ↑〉 ,(1.16)

| ↓〉 =
1√
2

(|+〉 − |−〉) ; A| ↓〉 = −| ↓〉 .(1.17)

A measurement of A for the state | ↑〉 will always yield the result ‘1’ with
unit probability whereas the measurement of H for this state will yield +E
with probability 1/2 and −E with probability 1/2.

A two state system is sometimes referred to as a qubit analogous to a
classical binary bit of information that can store information being either on
or off. Note however that for a classical bit, a linear superposition of the
‘on’ and ‘off’ states is not physically meaningful. In this respect, a qubit
is fundamentally different from a classical bit because of the possibility of
coherent quantum superposition.

1.3 Quantum Coherence

Even though the overall phase of a and b has no physical significance, the
relative phase is of crucial importance. We will briefly discuss this connection
with the information theory later after introducing the notion of entropy.

for a qubit it is meaningful to consider a linear superposition of A qubit
is essentially different from a classical bit in that contains information also in
the relative phases which is sometimes referred to as quantum coherence. It
allows for many of the surprising possibilities in quantum information theory.
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1.4 Density Matrix

Given a state |ψ〉 one can define the corresponding density matrix

(1.18) ρ(|ψ〉) = |ψ〉〈ψ|

For the state |ψ〉 of the two-state system given by (1.16)

(1.19) ρ(|ψ〉) = |ψ〉〈ψ| =
(
a∗

b∗

)(
a b

)
=

(
|a|2 a∗b
b∗a |b|2

)
.

This density matrix is by definition self-adjoint, and has unit trace because
the state |ψ〉 is normalized to have unit norm.

For example, the density matrix for the state | ↑〉〈↑ | is given by

(1.20) ρ(| ↓〉) := | ↓〉〈↓ | = 1

2

(
1 1
1 1

)
whereas the density matrix for the state | ↓〉〈↓ | is given by

(1.21) ρ(| ↓〉) := | ↓〉〈↓ | = 1

2

(
1 −1
−1 1

)
Note that for both states, a measurement of the observable H yields the result
1 with probability 1/2 and −1 with probability 1/2. This however does not
completely characterize the states. The two states are clearly different and
they differ from each other by relative phases. We see that the information
about the relative phases, or quantum coherence, is contained in the off-
diagonal elements of the density matrix.

Given a density matrix one can define its Von-Neumann entropy

(1.22) S = −TrHρ log(ρ) .

For the density matrix ρ(|ψ〉) corresponding to any state the Von-Neumann
entropy is zero. This can be easily checked by choosing |ψ〉 to be one of the
basis vectors of an orthonormal basis. For example, for our two state system,
the density matrix ρ(|+〉) takes the form

(1.23) ρ(|1〉) =

(
1 0
0 0

)
,

and hence S = 0.
This however suggests a more general notion of the density matrix, with

(1.24) ρ† = ρ , Tr (ρ) = 1
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which in a diagonal basis (in an N-dimensional Hilbert space) takes the form

(1.25)


p1 0 .. 0
0 p2 .. 0
.. .. .. 0
0 0 0 pN

 ,
N∑
i=1

pi = 1 .

A physical interpretation of this density matrix is that the we do not know
the state of the system precisely. We know only that the probability that the
system is in state |i〉 is pi. The The Von Neumann entropy of this density
matrix is nonzero and is given by

(1.26) S = −
∑
i=1

pi log pi

The density matrix for which the Von Neumann entropy is nonzero is said to
correspond to a mixed state. By contrast, the density matrix for which the
Von Neumann entropy is zero is said to correspond to a pure state.

1.5 Quantum Bosonic Oscillator

The hamiltonian of a quantum bosonic3 oscillator with an angular frequency
of oscillation ω is given by

(1.27) H =
ω

2
(a†a+ aa†) ,

where a is called the annihilation operator and a† is called the creation op-
erator. They satisfy the Heisenberg commutation relation

(1.28) [a, a†] = 1 , [a, a] = 0 , [a†, a†] = 0 .

One can define a number operator

(1.29) N = a†a .

It follows from (1.28) that

[N, a] = −a , [N, a†] = a† .(1.30)

3 The nomenclature of Bose and Fermi oscillator is explained in §2. Essentially, a
bosonic oscillator satisfies commutation relations (1.28) with Hamiltonian (1.35) whereas
a fermionic oscillator satisfies anti-commutation relations (1.45) with Hamiltonian (1.44).
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Thus, a lowers the N eigenvalue by one whereas a† raises it by one. We seek
a unitary representation of the Heisenberg algebra (1.28). For every state
|ψ〉 in a unitary representation,

(1.31) 〈ψ|N |ψ〉 = ψ|a†a|ψ〉 = |a|ψ〉|2 ≥ 0 .

Moreover, N |ψ〉 = 0 iff a|ψ〉 = 0. Let us denote the null eigenvector of N
by |0〉. This state is often referred to as the Fock vacuum of the system.
One can then construct the Fock representation of the Heisenberg algebra
generated by states {|n〉}, where

|n〉 =
(a†)n√
n!
|0〉 , n = 0, 1, 2. . . . .(1.32)

It is easy to see that

a|n〉 =
√
n|n− 1〉 , a†|n〉 =

√
n+ 1 |n+ 1〉 ,(1.33)

N |n〉 = n|n〉 .(1.34)

It is clear that the Hamiltonian is related to the number operator by

(1.35) H = ω(N +
1

2
) = ω(a†a+

1

2
) .

The Heisenberg equations of motion for the creation and annihilation
operators are

(1.36) i
da

dt
= −[H, a] = ωa , i

da†

dt
= −[H, a†] = −ωa†

These first order equations can be easily solved to obtain

(1.37) a(t) = a(0)e−iωt , a†(t) = a†(0)eiωt .

Note that a and a† are not self-adjoint operators but rather are adjoints of
each other. One can define self-adjoint operators Q and P by4

a =
√

w
2

(
Q+ i

w
P
)
, a† =

√
w

2

(
Q− i

w
P

)
;

Q =
√

1
2w

(
a+ a†

)
, P =

√
w

2i

(
a− a†

)
.(1.38)

4The factors of w are added so that Q and P can be identified with the ‘position’ and
‘momentum’ of a mechanical oscillator of unit mass such as a ball attached to a spring
with spring constant equal to w2. In our discussions the oscillator will refer always to the
harmonic mode of a quantum field and not to a mechanical oscillator.
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The ‘position’ and ‘momentum’ satisfy the Heisenberg commutation relation

(1.39) [Q,P ] = i .

The Hamiltonian can then be written as

(1.40) H =
1

2

(
P 2 + w2Q2

)
.

The observable Q and P satisfy the Heisenberg equations of motion

dQ

dt
= P ,(1.41)

dP

dt
= −ω2Q(1.42)

which are first order differential equations in time derivative. For a mechan-
ical oscillator, the operator Q can be thought of as the ‘coordinate’ and P
is called the ‘momentum conjugate to Q’ which is given simply by the first
time derivative of Q. One can eliminate P to obtain the equation of motion
for Q alone:

(1.43)
d2Q

dt2
= −ω2Q

which is a second order differential equation in time derivative.

1.6 Quantum Fermionic Oscillator

The hamiltonian of a quantum fermionic oscillator with an angular frequency
of oscillation ω is given by

(1.44) H =
ω

2
(b†b− bb†) ,

where b is called the fermionic annihilation operator and b† is called the
fermionic creation operator. They satisfy the Heisenberg anti -commutation
relation

(1.45) {b, b†} = 1 , {b, b} = 0 , {b†, b†} = 0

where the anti-commutator of two ‘fermionic’ operators A and B is defined
by

(1.46) {A,B} := AB +BA
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One can define a fermion number operator as before by

(1.47) F = b†b .

It follows from (1.28) that

[F, b] = −b , [F, b†] = b† .(1.48)

The Hamiltonian is given by

(1.49) H = ω(F − 1

2
) = ω(b†b− 1

2
) .

The unitary Fock representation of the Heisenberg algebra (1.45) is now
particularly simple. As before, one can define the Fock vacuum as the state
annihilated by N and hence by b. However, unlike for the bosonic oscillator,
(b†)2 = 0 , as a result the Fock representation terminates and we have only
a two state representation:

(1.50) |0〉 , |1〉 = b†|0〉 ,
such that

b|0〉 = 0 , b|1〉 = |0〉 ;(1.51)

b†|0〉 = |1〉 , b†|1〉 = 0 .(1.52)

Various operators thus have a simple matrix representation

b =

(
0 1
0 0

)
, b† =

(
0 0
1 0

)
;(1.53)

N =

(
0 0
0 1

)
, H =

ω

2

(
−1 0
0 1

)
.(1.54)

For the fermionic oscillator, there is a natural Z2 grading defined by the oper-
ator (−1)F which squares to one. Thus, operators that commute with (−1)F

(such as F and H) are even or bosonic, whereas operators that anticommute
with (−1)F (such as b and b†) are odd or fermionic. If one assigns fermion
number 0 to the Fock vacuum, then |0〉 is even whereas |1〉 is odd.

1.7 Partition Functions

Given a quantum system with a Hilbert space H and Hamiltonian H, one
can define its partition function as the trace

(1.55) Z(q) = TrH
[
qH
]
.

The partition function can be viewed as a character of the Hamiltonian. As
we will see in the next section, this mathematical object is of fundamental
physical significance.
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1.7.1 Bosonic Oscillator

It is easy to compute the partition function for the quantum bosonic os-
cillator. The eigenvalues of the Hamiltonian have energy εn = ω(n + 1

2
),

(n = 0, 1, . . .) and the the eigenvectors {|n〉} form a complete basis. Hence
the partition function is given by

Z(q) =
∞∑
n=0

qw(n+ 1
2

)(1.56)

= q
ω
2

(
1 + qω + q2ω + q3ω + . . .

)
(1.57)

=
q
ω
2

1− qω
.(1.58)

1.7.2 Fermionic Oscillator

One can similarly define the partition function for the fermionic oscillator.
The eigenvalues of the Hamiltonian have energy εn = ω(n − 1

2
), (n = 0, 1)

and the the eigenvectors {|n〉} form a complete basis. Hence the partition
function is given by

Z(q) =
1∑

n=0

qw(n− 1
2

)(1.59)

= q−
ω
2 (1 + qω) .(1.60)

For the fermionic oscillator, one can also compute the indexed partition
function including the Z2 grading in the trace:

(1.61) Z(q) = TrH

[
(−1)F qH

]
.

It can be readily evaluated:

(1.62) Z(q) = q−
ω
2 (1− qω) .

1.7.3 Multiple oscillators

One can also consider a system consisting of R bosonic oscillators of frequen-
cies {ω1, ω2, . . . ωR} and associated Hilbert spaces {H1,H2, . . .HR}. In this
case, the total Hilbert space is the product space

(1.63) H =
R⊗
r=1

Hr .
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The total Hamiltonian is the sum of the individual Hamiltonians:

H =
R∑
r=1

Hr(1.64)

=
R∑
r=1

ωra
†
rar .(1.65)

A typical eigenstate of the Hamiltonian is of the form

(1.66) |ψ〉 = |n1〉 ⊗ |n2〉 ⊗ . . .⊗ |nR〉 ,

with the energy eigenvalue (= total energy of the system)

(1.67) E =
R∑
r=1

nrωr + E0 .

where we have defined E0 as the energy of the Fock vacuum

(1.68) E0 :=
1

2

R∑
r=1

wr

The partition function of the combined system of I oscillators is then a
product of individual partition functions:

(1.69) Z(q) = qE0

R∏
r=1

1

1− qωr
.

Consider now a system of infinite oscillators so that R → ∞ with integer
frequencies so that wr = r (r = 1, 2, . . . ,∞). In this case, we have

(1.70) H =
∞∑
r=1

r

(
a†rar +

1

2

)
,

and the partition function is given by

(1.71) Z(q) = qE0

∞∏
r=1

1

(1− qr)
.

The ground state energy in this case is a divergent sum. To obtain a sensible
finite answer one can first define the regularized ground state energy Es

0 by
using ζ-function regularization:

(1.72) Es
0 =

1

2

∑
r

r−s =
1

2
ζ(s) .
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After evaluating the sum in terms of the Riemann ζ function ζ(s), and using
ζ(−1) = − 1

12
, one can define a finite5 renormalized ground state energy by

(1.73) E0 =
1

2
lim
s→−1

ζ(s)

With this renormalization, the partition function for the system of infinite
oscillators of integer frequencies is given by

(1.74) Z(q) = q−
1
24

∞∏
r=1

1

(1− qr)
.

which we recognize as the Dedekind η(τ) function.

1.8 Quantum Ensemble and Entropy

In many physical situations, one may not have complete knowledge about
the state of the system under consideration. For example, for the air in this
room, one may not have precise information about the states of all the air
molecules but one may know only that the total energy is E. In this case,
one is naturally led to the notion of an ensemble of quantum states.

An ensemble of fixed energy E is simply the eigen-subspace H(E) of the
Hamiltonian H with eigenvalue E. The quantum degeneracy d(E) is is the
multiplicity of the energy eigenvalue E

(1.75) d(E) := dim (H(E)) .

In physics literature d(E) is sometimes referred to as the the total number
of microstates of the system with total energy E.

The entropy S(E) of this ensemble by the Boltzmann relation

(1.76) S(E) = log d(E) .

The logarithm ensures that the total entropy of a system consisting of identi-
cal subsystems is additive much like the total energy. Thus, for N subsystems
each with energy E, the total energy is NE, and the ensemble of interest is
the eigensubspace of the total Hamiltonian

(1.77) Htot(IE) = H(E)⊗H(E) . . .⊗H(E)

5We discuss the physical justification for the renormalization procedure in more detail
in §2.4 in the context of local quantum field theories. Similar procedure was used by Euler.
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with dimension

(1.78) dtot(NE) = d(E)N

and hence the total entropy is Stot(NE) = NS(E).
The micro-canonical density matrix for an isolated system of energy E is

thus proportional to the identity matrix in the Hilbert subspace H(E):

(1.79) ρ(E) =
1

d(E)
1

We see that the Von-Neumann entropy of this density matrix equals the
entropy defined above:

(1.80) TrH(E) (ρ log(ρ)) = d(E) = S(E) .

The study of ensembles and their physical consequences is an important and
profound branch of physics known as Quantum Statistical Mechanics. Many
of the secrets of the quantum theory of matter were deduced indirectly well
before the final formulation of the theory in the 20th century. This was
possible through a deft use of statistical reasoning by some of the masters of
early statistical mechanics such as Boltzmann, Maxwell, Gibbs, and Einstein.

of the theory through Boltzmann relation

S(E,Q, J) = log(d(E,Q, J),

One may know only a few conserved quantum numbers6 of the system
such as the total energy E or the total charge Q or the total spin J of the
system.

where d is the the degeneracy or the total number of microstates of the
system of for a given energy.

1.9 Canonical Ensemble and Temperature

The right-hand side of the Boltzmann relation is defined in terms of the
microscopic properties of the system, namely, the dimension of the Hilbert
eigensubspace and as it it stands it is simply a definition. The fundamental
significance of entropy stems from the fact the left hand side of the Boltzmann
relation has an independent definition in terms of macroscopic thermody-
namic properties. Thus, the Boltzmann relation provides a link between the

6Quantum number of a conserved observable translates according to our dictionary to
an eigenvalue of a self-adjoint operator that commutes with the Hamiltonian.
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micro and macro world. The gross thermodynamic properties of a system can
be used to deduce nontrivial information about the microscopic structure.
Entropy is not a kinematic quantity like energy or momentum but rather
contains information about the total number microscopic degrees of freedom
of the system. Because of the Boltzmann relation, one can learn a great
deal about the microscopic properties of a system from its thermodynamics
properties.

Much of the power of statistical mechanics through the notion of entropy
and a fundamental relation due to

This is the famous ‘Bose-Einstein’ distribution. The Planck distribution
law follows.

This is the famous ‘Fermi-Dirac’ distribution.

1.10 Entropy, Disorder, and Information

The total information that can be stored in a system with a density matrix
ρ on a d-dimensional vector space d can thus be defined by

(1.81) I = Imax − S



Chapter 2

Quantum Fields and Particles

All physical processes take place in space and time. An event in d-dimensional
space can be specified by its spatial coordinates (x1, x2, . . . , xd) and the time
t of its occurrence. In Newtonian physics, time is absolute, in that all ob-
servers in relative motion with respect to each other record the same time.
In Einsteinian physics, time is relative, in that different observers in relative
motion experience different times and in general time coordinate can ‘mix’
with the spatial coordinates. This relativity of time implies that one must
regard spacetime as single entity combining space and time together.

We start with a few definitions about the spacetime and classical fields
and then explain how one can define quantum fields using the quantum os-
cillators introduced earlier.

2.1 Spacetime Manifold and Classical Fields

A (1 + d)-dimensional spacetime is a differential manifold M1,d with local
coordinates {xµ}, (µ = 0, 1, 2, . . . d) where the coordiate x0 is interpreted as
the time coordinate t and the coordinates xi, (i = 1, 2, . . . d) are the spa-
tial coordinates. In Einsteins General Theory of Relativity, M1,d is pseudo-
Riemannian manifold equipped with a metric gµν with Lorentzian signature1

−+ . . .+. Recall that the metric is rank-2, symmetric, covariant, tensor field
which defines the local line element by

(2.1) ds2 = gµν dx
µ dxν .

The simplest example of a spacetime is the Minkowski spacetime R1,d

1By contrast, the metric for a Riemannian manifold has Euclidean signature + + . . .+.

19
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where the metric is the Minkowski metric

(2.2) gµν = ηµν :=


−1 0 0 0
0 1 0 0
0 0 .. 0
0 0 0 1


and the local line element

(2.3) ds2 = ηµν dx
µ dxν = −(dx0)2 + (dx1)2 + . . .+ (dxd)2 .

Thus, a Minkowski spacetime is just a Lorentzian analog of Euclidean space
R1+d with the Euclidean metric δµν .

The structure group of the tangent space is SO(1, d) and there is a nat-
ural Minkowski metric defined on the tangent space. One can thus define a
tangent bundle on M . In physics, one considers the double cover Spin(1, d)
which admits spinor representations. This allows one to define the spinor
bundle. One can also consider a more general associated vector bundle with
the Spin(1, d) × G where G is a compact Lie group. Various classical fields
that occur in physics can be thought of as sections of these bundles.

The best known example of a classical field is the electromagnetic field
introduced by Faraday and Maxwell. There are several other fields of impor-
tance in physics such as the scalar field sometimes referred to as Klein-Gordon
field, the Dirac spinor field and the metric tensor field.

On a Riemannian manifold one can define the Christoffel symbols Γαµν
determined in terms of the first derivatives of the metric

(2.4) Γαµν

The Christoffel symbols determine the Levi-Civita connection which can be
used to define parallel transport and covariant derivatives for the tensor fields.
Each of the classical fields satisfy an equation of motion which is a covariant
partial differential equation similar to the Laplace equation on a Euclidean
manifold. We will see in the next section that one can associate a quantum
field with a given classical field. The classical field equation can then be
viewed as the classical version of the the Heisenberg equation of motion for
the corresponding quantum field.

• Scalar field ϕ:

The simplest example of a classical field is a real scalar field ϕ(x) which
is scalar-valued function on M1,d or equivalently a scalar-valued map
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from M1,d to R. A massless free scalar field satisfies a second-order
differential equation known as the massless Klein-Gordon equation

(2.5) ∆gϕ = 0

where ∆g is the Lorentzian analog of the scalar Laplacian, which is
sometime referred to as the d’Alembertian. It is defined by

(2.6) ∆g := d∗d

where d is the de-Rham operator and ∗ is the Hodge star operation.

• Vector field Aµ(x)

A (covariant) vector field (or equivalently the connectoin one-form)
A := Aµdx

µ corresponds to the electromagnetic potential. The one
form A can be thought of a section of the principle bundle with struc-
ture group U(1). One can define the field strength (or equivalently the
curvature two-form) by F := dA with the Bianchi identity dF = 0.
The free vector field satisfies the equation of motion

(2.7) d∗F = 0 .

All the rich physics of classical maxwell electrodynamics such as the
propagation of electromagnetic waves follows from these equations of
motion. More generally, one can consider a principle bundle with struc-
ture group G. The section of this bundle is called the gauge field with
gauge group G.

• Spinor field Ψα(x):

The Dirac spinor field is a section of the spin bundle on the manifold.
A spinor field satisfies a first order differential equation known as the
Dirac equation

(2.8) ΓµDµΨ = 0

2.2 A Scalar field in 1+1 Dimensions

Consider the Hamilotonian of a system of infinite number of oscillators with
integral frequencies 1, 2, 3, . . . that we considered earlier:

(2.9) H =
∞∑
r=1

r

(
a†rar +

1

2

)
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which we will refer to as the left-moving Hamiltonian. Consider another
identical copy

(2.10) H̃ =
∞∑
r̃=1

(
r̃ã†rãr +

1

2

)
which we will refer to as a right-moving Hamiltonian. Now, consider a
Lorentzian Manifold M1,1 with coordinates (t, x). We further assume that
the manifold is topologically a cylinder with the identifications

(2.11) (t, x) ∼ (t, x+ 2π) .

Given this set of oscillators, one can define and operator-valued left-
moving field ϕL(x, t) by

(2.12) ϕL(t− x) :=
∞∑
r=1

1√
2r

[
are
−ir(t−x) + a†re

+ir(t−x)
]

and similarly a right-moving field

(2.13) ϕR(t+ x) :=
∞∑
r

1√
2r

[
ãre
−ir(t−x) + ã†re

+ir(t−x)
]

Together, one can define a scalar quantum field on R1,1

(2.14) ϕ(t, x) = ϕL(t− x) + ϕR(t+ x) + φ0

Thus a quantum field can be thought of as a operator valued function which
is the quantum version of a classical field which is a scalar valued function.
More generally, a quantum field ϕ(t, x) is an operator-valued distribution.

Note that this field satisfies the massless Klein-Gordon equation in 1 + 1
dimensions with flat metric g = η:

(2.15) ∆ηϕ =

(
− ∂2

∂t2
+

∂2

∂x2

)
ϕ = 0

This can be seen easily by defining the cooordinates

(2.16) x+ := t+ x , x− := t− x ,

so that

(2.17) ∆ηϕ = 4
∂2

∂x+∂x+
ϕ
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which vanishes trivially because ϕL is independent of x+ whereas ϕR is in-
dependent of x−.

We can rewrite the quantum field as

(2.18) ϕ(t, x) =
∞∑

k=−∞

1√
2r

[
are
−ir(t−x) + a†re

+ir(t−x)
]

If the equations of motion of the quantum field is Weyl invariant then it
is called a conformal field. In this case the quantum field theory is called a
conformal field theory.

2.3 A Dirac field in 1+1 Dimensions

2.4 Renormalization

Let us consider the ground state energy of the left-moving oscillators:

(2.19) E0 =
1

2

∞∑
r=1

r

It is clearly divergent but can be ‘regularized’, for example as

(2.20) Eε
0 =

1

2

∞∑
r=1

re−εr

for a small ε. This can be readily summed by noting that

Eε
0 = −1

2

∂

∂ε

∞∑
r=1

e−εr = −1

2

∂

∂ε

(
1

1− e−ε

)
(2.21)

=
eε

2(eε − 1)2
(2.22)

We have introduced a quantum field is a collection of infinite number of
quantum oscillators. The Hilbert space is infinite product and the Hamilot-
nian is an infinite sum. Consequently, there is a potential for divergences.
These divergences can be studying a regularized theory by putting a cutoff
which renders the infinite sums finite and well-defined. Renormalization the-
ory is the study of this limit. More generally, when interactions are present

2.5 A Quantum Field in 1+ 3 Dimensions

The Planck distribution law thus follows



24 CHAPTER 2. QUANTUM FIELDS AND PARTICLES

2.6 A Macro-window into the Micro-world

This example illustrates how For example the number density of photons,
which is closely related to the entropy density, scales with temperature as
T 3 whereas the energy density scales as T 4. This is a concrete macroscopic
prediction of the highly abstract microscopic model of the photon gas in
terms of the quantum oscillators associated with the electromagnetic field.
Experimental verification of this prediction provides a macroscopic confir-
mation of the microscopic model. It is in this way that statistical reasoning
together with the Boltzmann relation provides a macroscopic window into
the microscopic world.

2.7 Elementary Particles

2.8 Symmetries

2.9 Interactions
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Classical Black Holes

3.1 General Relativity and Classical Gravity

Curvature of spacetime is gravity and the Riemann curvature tensor Rαβµν

which is determined in terms of the second derivatives of the metric ∂α∂βgµν
Matter dictates how spacetime curves. Spacetime dictates how matter

moves.
To understand the relevant parameters and the geometry of black holes,

let us first consider the Einstein-Maxwell theory described by the action

(3.1)
1

16πG

∫
R
√
gd4x− 1

16π

∫
F 2√gd4x,

where G is Newton’s constant, Fµν is the electro-magnetic field strength, R
is the Ricci scalar of the metric gµν . In our conventions, the indices µ, ν take
values 0, 1, 2, 3 and the metric has signature (−,+,+,+).

3.2 Schwarzschild Black Hole

Consider the Schwarzschild metric which is a spherically symmetric, static
solution of the vacuum Einstein equations Rµν − 1

2
gµν = 0 that follow from

(3.1) when no electromagnetic fields are excited. This metric is expected to
describe the spacetime outside a gravitationally collapsed non-spinning star
with zero charge. The solution for the line element is given by

ds2 ≡ gµνdx
µdxν = −(1− 2GM

r
)dt2 + (1− 2GM

r
)−1dr2 + r2dΩ2,

where t is the time, r is the radial coordinate, and Ω is the solid angle on
a 2-sphere. This metric appears to be singular at r = 2GM because some

25
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of its components vanish or diverge, g00 → ∞ and grr → ∞. As is well
known, this is not a real singularity. This is because the gravitational tidal
forces are finite or in other words, components of Riemann tensor are finite in
orthonormal coordinates. To better understand the nature of this apparent
singularity, let us examine the geometry more closely near r = 2GM . The
surface r = 2GM is called the ‘event horizon’ of the Schwarzschild solution.
Much of the interesting physics having to do with the quantum properties of
black holes comes from the region near the event horizon.

To focus on the near horizon geometry in the region (r−2GM)� 2GM ,
let us define (r − 2GM) = ξ , so that when r → 2GM we have ξ → 0. The
metric then takes the form

(3.2) ds2 = − ξ

2GM
dt2 +

2GM

ξ
(dξ)2 + (2GM)2dΩ2,

up to corrections that are of order ( 1
2GM

). Introducing a new coordinate ρ,

ρ2 = (8GM)ξ so that dξ2 2GM

ξ
= dρ2,

the metric takes the form

(3.3) ds2 = − ρ2

16G2M2
dt2 + dρ2 + (2GM)2dΩ2.

From the form of the metric it is clear that ρ measures the geodesic radial
distance. Note that the geometry factorizes. One factor is a 2-sphere of
radius 2GM and the other is the (ρ, t) space

(3.4) ds2
2 = − ρ2

16G2M2
dt2 + dρ2.

We now show that this 1 + 1 dimensional spacetime is just a flat Minkowski
space written in funny coordinates called the Rindler coordinates.

3.3 Rindler coordinates

To understand Rindler coordinates and their relation to the near horizon
geometry of the black hole, let us start with 1 + 1 Minkowski space with the
usual flat Minkowski metric,

(3.5) ds2 = −dT 2 + dX2.

In light-cone coordinates,

(3.6) U = (T +X) V = (T −X),
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the line element takes the form

(3.7) ds2 = −dU dV.

Now we make a coordinate change

(3.8) U =
1

κ
eκu, V = −1

κ
e−κv,

to introduce the Rindler coordinates (u, v). In these coordinates the line
element takes the form

(3.9) ds2 = −dU dV = −eκ(u−v)du dv.

Using further coordinate changes

(3.10) u = (t+ x), v = (t− x), ρ =
1

κ
eκx,

we can write the line element as

(3.11) ds2 = e2κx(−dt2 + dx2) = −ρ2κ2dt2 + dρ2.

Comparing (3.4) with this Rindler metric, we see that the (ρ, t) factor of the
Schwarzschild solution near r ∼ 2GM looks precisely like Rindler spacetime
with metric

(3.12) ds2 = −ρ2κ2 dt2 + dρ2

with the identification

κ =
1

4GM
.

This parameter κ is called the surface gravity of the black hole. For the
Schwarzschild solution, one can think of it heuristically as the Newtonian ac-
celeration GM/r2

H at the horizon radius rH = 2GM . Both these parameters–
the surface gravity κ and the horizon radius rH play an important role in the
thermodynamics of black hole.

This analysis demonstrates that the Schwarzschild spacetime near r =
2GM is not singular at all. After all it looks exactly like flat Minkowski
space times a sphere of radius 2GM . So the curvatures are inverse powers of
the radius of curvature 2GM and hence are small for large 2GM .
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3.4 Exercises

Uniformly accelerated observer and Rindler coordinates

Consider an astronaut in a spaceship moving with constant acceleration a
in Minkowski spactime with Minkowski coordinates (T, ~X). This means she
feels a constant normal reacting from the floor of the spaceship in her rest
frame:

(3.13)
d2 ~X

dt2
= ~a ,

dT

dτ
= 1

where τ is proper time and ~a is the acceleration 3-vector.

1. Write the equation of motion in a covariant form and show that her 4-
velocity uµ := dXµ

dτ
is timelike whereas her 4-acceleration aµ is spacelike.

2. Show that if she is moving along the x direction, then her trajectory is
of the form

(3.14) T =
1

a
sinh(aτ) , X =

1

a
cosh(aτ)

which is a hyperboloid. Find the acceleration 4-vector.

3. Show that it is natural for her to use her proper time as the time coor-
dinate and introduce a coordinate frame of a family of observers with

(3.15) T = ζ sinh(aη) , X = ζ cosh(aη) .

By examining the metric, show that v = η − ζ and u = η + ζ are precisely
the Rindler coordinates introduced earlier with the acceleration parameter a
identified with the surface gravity κ.

3.5 Kruskal extension

One important fact to note about the Rindler metric is that the coordinates
u, v do not cover all of Minkowski space because even when the vary over the
full range

−∞ ≤ u ≤ ∞, −∞ ≤ v ≤ ∞
the Minkowski coordinate vary only over the quadrant

(3.16) 0 ≤ U ≤ ∞, −∞ < V ≤ 0.

If we had written the flat metric in these ‘bad’, ‘Rindler-like’ coordinates, we
would find a fake singularity at ρ = 0 where the metric appears to become
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singular. But we can discover the ‘good’, Minkowski-like coordinates U and
V and extend them to run from −∞ to ∞ to see the entire spacetime.

Since the Schwarzschild solution in the usual (r, t) Schwarzschild coordi-
nates near r = 2GM looks exactly like Minkowski space in Rindler coordi-
nates, it suggests that we must extend it in properly chosen ‘good’ coordi-
nates. As we have seen, the ‘good’ coordinates near r = 2GM are related
to the Schwarzschild coordinates in exactly the same way as the Minkowski
coordinates are related the Rindler coordinates.

In fact one can choose ‘good’ coordinates over the entire Schwarzschild
spacetime. These ‘good’ coordinates are called the Kruskal coordinates. To
obtain the Kruskal coordinates, first introduce the ‘tortoise coordinate’

(3.17) r∗ = r + 2GM log

(
r − 2GM

2GM

)
.

In the (r∗, t) coordinates, the metric is conformally flat, i.e., flat up to rescal-
ing

(3.18) ds2 = (1− 2GM

r
)(−dt2 + dr∗2).

Near the horizon the coordinate r∗ is similar to the coordinate x in (3.11)
and hence u = t + r∗ and v = t − r∗ are like the Rindler (u, v) coordinates.
This suggests that we define U, V coordinates as in (3.8) with κ = 1/4GM .
In these coordinates the metric takes the form

(3.19) ds2 = −e−(u−v)κdU dV = −2GM

r
e−r/2GMdU dV

We now see that the Schwarzschild coordinates cover only a part of spacetime
because they cover only a part of the range of the Kruskal coordinates. To
see the entire spacetime, we must extend the Kruskal coordinates to run
from −∞ to ∞. This extension of the Schwarzschild solution is known as
the Kruskal extension.

Note that now the metric is perfectly regular at r = 2GM which is the
surface UV = 0 and there is no singularity there. There is, however, a real
singularity at r = 0 which cannot be removed by a coordinate change because
physical tidal forces become infinite. Spacetime stops at r = 0 and at present
we do not know how to describe physics near this region.

3.6 Event horizon

We have seen that r = 2GM is not a real singularity but a mere coordi-
nate singularity which can be removed by a proper choice of coordinates.
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Thus, locally there is nothing special about the surface r = 2GM . However,
globally, in terms of the causal structure of spacetime, it is a special surface
and is called the ‘event horizon’. An event horizon is a boundary of region
in spacetime from behind which no causal signals can reach the observers
sitting far away at infinity.

To see the causal structure of the event horizon, note that in the metric
(3.11) near the horizon, the constant radius surfaces are determined by

(3.20) ρ2 =
1

κ2
e2κx =

1

κ2
eκue−κv = −UV = constant

These surfaces are thus hyperbolas. The Schwarzschild metric is such that
at r � 2GM and observer who wants to remain at a fixed radial distance
r = constant is almost like an inertial, freely falling observers in flat space.
Her trajectory is time-like and is a straight line going upwards on a space-
time diagram. Near r = 2GM , on the other hand, the constant r lines are
hyperbolas which are the trajectories of observers in uniform acceleration.

To understand the trajectories of observers at radius r > 2GM , note
that to stay at a fixed radial distance r from a black hole, the observer must
boost the rockets to overcome gravity. Far away, the required acceleration
is negligible and the observers are almost freely falling. But near r = 2GM
the acceleration is substantial and the observers are not freely falling. In
fact at r = 2GM , these trajectories are light like. This means that a fiducial
observer who wishes to stay at r = 2GM has to move at the speed of light
with respect to the freely falling observer. This can be achieved only with
infinitely large acceleration. This unphysical acceleration is the origin of the
coordinate singularity of the Schwarzschild coordinate system.

In summary, the surface defined by r = contant is timelike for r > 2GM ,
spacelike for r < 2GM , and light-like or null at r = 2GM .

In Kruskal coordinates, at r = 2GM , we have UV = 0 which can be
satisfied in two ways. Either V = 0, which defines the ‘future event horizon’,
or U = 0, which defines the ‘past event horizon’. The future event horizon is
a one-way surface that signals can be sent into but cannot come out of. The
region bounded by the event horizon is then a black hole. It is literally a hole
in spacetime which is black because no light can come out of it. Heuristically,
a black hole is black because even light cannot escape its strong gravitation
pull. Our analysis of the metric makes this notion more precise. Once an
observer falls inside the black hole she can never come out because to do so
she will have to travel faster than the speed of light.

As we have noted already r = 0 is a real singularity that is inside the
event horizon. Since it is a spacelike surface, once a observer falls insider the
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event horizon, she is sure to meet the singularity at r = 0 sometime in future
no matter how much she boosts the rockets.

In our example of the Schwarzschild black hole, the event horizon is static
because it is defined as a constant r hypersurface r = 2GM which does not
change with time. More precisely, the time-like Killing vector ∂

∂t
leaves it

invariant. It is at the same time null because grr vanishes at r = 2GM so
that the norm of the 1-form dr vanishes. In general, as for a spinning Kerr-
Newman black hole, the horizon is not static but only stationary (because of
the uniform rotation) and null.

In summary, an event horizon is a surface that is simultaneously station-
ary and null, which causally separates the inside and the outside of a black
hole. For a discussion of the notion of an event horizon in greater generality
see [4, 5].

3.7 Black hole parameters

From our discussion of the Schwarzschild black hole we are ready to abstract
some important general concepts that are useful in describing the physics of
more general black holes.

To begin with, a black hole is an asymptotically flat spacetime that con-
tains a region which is not in the backward lightcone of future timelike infin-
ity. The boundary of such a region is a stationary null surface call the event
horizon. The fixed t slice of the event horizon is a two sphere.

There are a number of important parameters of the black hole. We have
introduced these in the context of Schwarzschild black holes. For a general
black holes their actual values are different but for all black holes, these
parameters govern the thermodynamics of black holes.

1. The radius of the event horizon rH is the radius of the two sphere. For
a Schwarzschild black hole, we have rH = 2GM .

2. The area of the event horizon AH is given by 4πr2
H . For a Schwarzschild

black hole, we have AH = 16πG2M2.

3. The surface gravity is the parameter κ that we encountered earlier. As
we have seen, for a Schwarzschild black hole, κ = 1/4GM .

3.8 Charged Black Hole

The most general static, spherically symmetric, charged solution of the Einstein-
Maxwell theory (3.1) gives the Reissner-Nordström (RN) black hole. In what
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follows we choose units so that G = ~ = 1. The line element is given by

(3.21) ds2 = −
(

1− 2M

r
+
Q2

r2

)
dt2 +

(
1− 2M

r
+
Q2

r2

)−1

dr2 + r2dΩ2,

and the electromagnetic field strength by

Ftr = Q/r2.

The parameter Q is the charge of the black hole and M is the mass. For
Q = 0 this reduces to the Schwarzschild black hole.

From the metric (3.21) we see that the event horizon for this solution is
located at where grr = 0, or

1− 2M

r
+
Q2

r2
= 0.

Since this is a quadratic equation in r,

r2 − 2QMr +Q2 = 0,

it has two solutions.

r± = M ±
√
M2 −Q2.

Thus, r+ defines the outer horizon of the black hole and r− defines the inner
horizon of the black hole. The area of the black hole is 4πr2

+.

3.9 Historical aside

Apart from its physical significance, the entropy of a black hole makes for a
fascinating study in the history of science. It is one of the very rare examples
where a scientific idea has gestated and evolved over several decades into an
important conceptual and quantitative tool almost entirely on the strength of
theoretical considerations. That we can proceed so far with any confidence at
all with very little guidance from experiment is indicative of the robustness of
the basic tenets of physics. It is therefore worthwhile to place black holes and
their entropy in a broader context before coming to the more recent results
pertaining to the quantum aspects of black holes within string theory.

A black hole is now so much a part of our vocabulary that it can be
difficult to appreciate the initial intellectual opposition to the idea of ‘gravi-
tational collapse’ of a star and of a ‘black hole’ of nothingness in spacetime
by several leading physicists, including Einstein himself.
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To quote the relativist Werner Israel ,
“ There is a curious parallel between the histories of black holes and

continental drift. Evidence for both was already non-ignorable by 1916, but
both ideas were stopped in their tracks for half a century by a resistance
bordering on the irrational.”

On January 16, 1916, barely two months after Einstein had published
the final form of his field equations for gravitation [12], he presented a pa-
per to the Prussian Academy on behalf of Karl Schwarzschild [13], who was
then fighting a war on the Russian front. Schwarzschild had found a spheri-
cally symmetric, static and exact solution of the full nonlinear equations of
Einstein without any matter present.

The Schwarzschild solution was immediately accepted as the correct de-
scription within general relativity of the gravitational field outside a spherical
mass. It would be the correct approximate description of the field around
a star such as our sun. But something much more bizzare was implied by
the solution. For an object of mass M, the solution appeared to become
singular at a radius R = 2GM/c2. For our sun, for example, this radius,
now known as the Schwarzschild radius, would be about three kilometers.
Now, as long the physical radius of the sun is bigger than three kilometers,
the ‘Schwarzschild’s singularity’ is of no concern because inside the sun the
Schwarzschild solution is not applicable as there is matter present. But what
if the entire mass of the sun was concentrated in a sphere of radius smaller
than three kilometers? One would then have to face up to this singularity.

Einstein’s reaction to the ‘Schwarzschild singularity’ was to seek argu-
ments that would make such a singularity inadmissible. Clearly, he believed,
a physical theory could not tolerate such singularities. This drove his to write
as late as 1939, in a published paper,

“The essential result of this investigation is a clear understanding as to
why the ‘Schwarzschild singularities’ do not exist in physical reality.”

This conclusion was however based on an incorrect argument. Einstein
was not alone in this rejection of the unpalatable idea of a total gravitational
collapse of a physical system. In the same year, in an astronomy conference in
Paris, Eddington, one of the leading astronomers of the time, rubbished the
work of Chandrasekhar who had concluded from his study of white dwarfs,
a work that was to earn him the Nobel prize later, that a large enough star
could collapse.

Interestingly, Einstein’s paper on the inadmissibility of the Schwarzschild
singularity appeared only two months before Oppenheimer and Snyder pub-
lished their definitive work on stellar collapse with an abstract that read,

“When all thermonuclear sources of energy are exhausted, a sufficiently
heavy star will collapse.”
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Once a sufficiently big star ran out of its nuclear fuel, then there was
nothing to stop the inexorable inward pull of gravity. The possibility of
stellar collapse meant that a star could be compressed in a region smaller
than its Schwarzschild radius and the ‘Schwarzschild singularity’ could no
longer be wished away as Einstein had desired. Indeed it was essential to
understand what it means to understand the final state of the star.

It is thus useful to keep in mind what seems now like a mere change of
coordinates was at one point a matter of raging intellectual debate.



Chapter 4

Semiclassical Black Holes

In the semiclassical treatment of a black hole, we treat the spacetime ge-
ometry of the black hole classically but treat various fields such as the elec-
tromagnetic field in this fixed spacetime background quantum mechanically.
This semiclassical inclusion of quantum effects already reveals a deep and
unexpected connection between the spacetime geometry of a black hole and
thermodynamics.

4.1 Hawking temperature

Bekenstein asked a simple-minded but incisive question. If nothing can come
out of a black hole, then a black hole will violate the second law of thermo-
dynamics. If we throw a bucket of hot water into a black hole then the net
entropy of the world outside would seem to decrease. Do we have to give up
the second law of thermodynamics in the presence of black holes?

Note that the energy of the bucket is also lost to the outside world but
that does not violate the first law of thermodynamics because the black hole
carries mass or equivalently energy. So when the bucket falls in, the mass of
the black hole goes up accordingly to conserve energy. This suggests that one
can save the second law of thermodynamics if somehow the black hole also
has entropy. Following this reasoning and noting the formal analogy between
the area of the black hole and entropy discussed in the previous section,
Bekenstein proposed that a black hole must have entropy proportional to its
area [14].

This way of saving the second law is however in contradiction with the
classical properties of a black hole because if a black hole has energy E and

35
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entropy S, then it must also have temperature T given by

1

T
=
∂S

∂E
.

For example, for a Schwarzschild black hole, the area and the entropy scales
as S ∼ M2. Therefore, one would expect inverse temperature that scales as
M

(4.1)
1

T
=

∂S

∂M
∼ ∂M2

∂M
∼M.

Now, if the black hole has temperature, then like any hot body, it must
radiate. For a classical black hole, by its very nature, this is impossible.

In his seminal work [15], Hawking showed that it is possible for a black
hole to radiate once quantum effects are included. In quantum theory,
particle-antiparticle are constantly being created and annihilated even in
vacuum. Near the horizon, an antiparticle can fall in once in a while and the
particle can escapes to infinity. In fact, Hawking’s calculation showed that
the spectrum emitted by the black hole is precisely thermal with tempera-
ture T = ~κ

2π
= ~

8πGM
. With this precise relation between the temperature

and surface gravity the laws of black hole mechanics discussed in the earlier
section become identical to the laws of thermodynamics. Using the formula
for the Hawking temperature and the first law of thermodynamics

dM = TdS =
κ~

8πG~
dA,

one can then deduce the precise relation between entropy and the area of the
black hole:

S =
Ac3

4G~
.

Before discussing the entropy of a black hole, let us derive the Hawking
temperature in a somewhat heuristic way using a Euclidean continuation
of the near horizon geometry. In quantum mechanics, for a system with
Hamiltonian H, the thermal partition function is

(4.2) Z = Tre−βĤ ,

where β is the inverse temperature. This is related to the time evolution
operator e−itH/~ by a Euclidean analytic continuation t = −iτ if we identify
τ = β~. Let us consider a single scalar degree of freedom Φ, then one can
write the trace as

Tre−τĤ/~ =

∫
dφ < φ|e−τEĤ/~|φ >
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and use the usual path integral representation for the propagator to find

Tre−τĤ/~ =

∫
dφ

∫
DΦe−SE [Φ].

Here SE[Φ] is the Euclidean action over periodic field configurations that
satisfy the boundary condition

Φ(β~) = Φ(0) = φ.

This gives the relation between the periodicity in Euclidean time and the
inverse temperature,

(4.3) β~ = τ or T =
~
τ
.

Let us now look at the Euclidean Schwarzschild metric by substituting t =
−itE. Near the horizon the line element (3.11) looks like

ds2 = ρ2κ2dt2E + dρ2.

If we now write κtE = θ, then this metric is just the flat two-dimensional
Euclidean metric written in polar coordinates provided the angular variable
θ has the correct periodicity 0 < θ < 2π. If the periodicity is different,
then the geometry would have a conical singularity at ρ = 0. This implies
that Euclidean time tE has periodicity τ = 2π

κ
. Note that far away from

the black hole at asymptotic infinity the Euclidean metric is flat and goes as
ds2 = dτ 2

E + dr2. With periodically identified Euclidean time, tE ∼ tE + τ ,
it looks like a cylinder. Near the horizon at ρ = 0 it is nonsingular and
looks like flat space in polar coordinates for this correct periodicity. The full
Euclidean geometry thus looks like a cigar. The tip of the cigar is at ρ = 0
and the geometry is asymptotically cylindrical far away from the tip.

Using the relation between Euclidean periodicity and temperature, we
then conclude that Hawking temperature of the black hole is

(4.4) T =
~κ
2π
.

4.2 Bekenstein-Hawking entropy

Even though we have “derived” the temperature and the entropy in the
context of Schwarzschild black hole, this beautiful relation between area and
entropy is true quite generally essentially because the near horizon geometry
is always Rindler-like. For all black holes with charge, spin and in number
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of dimensions, the Hawking temperature and the entropy are given in terms
of the surface gravity and horizon area by the formulae

TH =
~κ
2π
, S =

A

4G~
.

This is a remarkable relation between the thermodynamic properties of a
black hole on one hand and its geometric properties on the other.

The fundamental significance of entropy stems from the fact that even
though it is a quantity defined in terms of gross thermodynamic properties,
it contains nontrivial information about the microscopic structure of the
theory through Boltzmann relation

S = k log(d),

where d is the the degeneracy or the total number of microstates of the system
of for a given energy, and k is Boltzmann constant. Entropy is not a kinematic
quantity like energy or momentum but rather contains information about
the total number microscopic degrees of freedom of the system. Because of
the Boltzmann relation, one can learn a great deal about the microscopic
properties of a system from its thermodynamics properties.

The Bekenstein-Hawking entropy behaves in every other respect like the
ordinary thermodynamic entropy. It is therefore natural to ask what mi-
crostates might account for it. Since the entropy formula is given by this
beautiful, general form

S =
Ac3

4G~
,

that involves all three fundamental dimensionful constants of nature, it is
a valuable piece of information about the degrees of freedom of a quantum
theory of gravity.

4.3 Laws of black hole mechanics

One of the remarkable properties of black holes is that one can derive a set
of laws of black hole mechanics which bear a very close resemblance to the
laws of thermodynamics. This is quite surprising because a priori there is
no reason to expect that the spacetime geometry of black holes has anything
to do with thermal physics.

(0) Zeroth Law: In thermal physics, the zeroth law states that the temper-
ature T of a body at thermal equilibrium is constant throughout the
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body. Otherwise heat will flow from hot spots to the cold spots. Corre-
spondingly for stationary black holes one can show that surface gravity
κ is constant on the event horizon. This is obvious for spherically
symmetric horizons but is true also more generally for non-spherical
horizons of spinning black holes.

(1) First Law: Energy is conserved, dE = TdS + µdQ + ΩdJ , where E is
the energy, Q is the charge with chemical potential µ and J is the spin
with chemical potential Ω. Correspondingly for black holes, one has
dM = κ

8πG
dA + µdQ + ΩdJ . For a Schwarzschild black hole we have

µ = Ω = 0 because there is no charge or spin.

(2) Second Law: In a physical process the total entropy S never decreases,
∆S ≥ 0. Correspondingly for black holes one can prove the area the-
orem that the net area in any process never decreases, ∆A ≥ 0. For
example, two Schwarzschild black holes with masses M1 and M2 can
coalesce to form a bigger black hole of mass M . This is consistent with
the area theorem, since the area is proportional to the square of the
mass, and (M1 + M2)2 ≥ M2

1 + M2
2 . The opposite process where a

bigger black hole fragments is however disallowed by this law.

Thus the laws of black hole mechanics, crystallized by Bardeen, Carter,
Hawking, and other bears a striking resemblance with the three laws of ther-
modynamics for a body in thermal equilibrium. We summarize these results
below in Table(4.1) for a black hole of mass M , spin J , and charge Q.

Table 4.1: Classical Laws of Black Hole Mechanics

Laws of Thermodynamics Laws of Black Hole Mechanics

Temperature is constant Surface gravity is constant
throughout a body at equilibrium. on the event horizon.

T= constant. κ =constant.

Energy is conserved. Energy is conserved.
dE = TdS + µdQ+ ΩdJ. dM = κ

8π
dA+ µdQ+ ΩdJ.

Entropy never decreases. Area never decreases.
∆S ≥ 0. ∆A ≥ 0.

Here A is the area of the horizon, and κ is the surface gravity which can
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be thought of roughly as the acceleration at the horizon, µ is the chemical
potential conjugate to Q, and Ω is the angular speed conjugate to J .

We will see that this formal analogy between the laws of black hole me-
chanics and thermodynamics is actually much more than an analogy. Beken-
stein and Hawking discovered that there is a deep connection between black
hole geometry, thermodynamics and quantum mechanics. Quantum mechan-
ically, a black hole is not quite black.

4.4 Extremal Black Holes

Reissner-Nordström (RN) black hole

1. Identify the horizon for this metric and examine the near horizon ge-
ometry to show that it has two-dimensional Rindler spacetime as a
factor.

2. Using the relation to the Rindler geometry determine the surface grav-
ity κ as for the Schwarzschild black hole and thereby determine the
temperature and entropy of the black hole.

T =
κ~
2π

=

√
M2 −Q2

2π(2M(M +
√
M2 −Q2)−Q2)

S = πr2
+ = π(M +

√
M2 −Q2)2.

Recover the formulae for Schwarzschild black hole in the limit Q = 0.

3. Show that in the extremal limit M → Q the temperature vanishes but
the entropy has a nonzero limit. Show that for the extremal Reissner-
Nordström black hole the near horizon geometry is of the form AdS2×
S2.

For a physically sensible definition of temperature and entropy in (4.5)
the mass must satisfy the bound M2 ≥ Q2. Something special happens when
this bound is saturated and M = |Q|. In this case r+ = r− = |Q| and the
two horizons coincide. We choose Q to be positive. The solution (3.21) then
takes the form,

(4.5) ds2 = −(1−Q/r)2dt2 +
dr2

(1−Q/r)2
+ r2dΩ2,

with a horizon at r = Q. In this extremal limit (4.5), we see that the temper-
ature of the black hole goes to zero and it stops radiating but nevertheless
its entropy has a finite limit given by S → πQ2. When the temperature
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goes to zero, thermodynamics does not really make sense but we can use this
limiting entropy as the definition of the zero temperature entropy.

For extremal black holes it is sometimes more convenient to use isotropic
coordinates in which the line element takes the form

ds2 = H−2(~x)dt2 +H2(~x)d~x2

where d~x2 is the flat Euclidean line element δijdx
idxj and H(~x) is a harmonic

function of the flat Laplacian

δij
∂

∂xi
∂

∂xj
.

The extremal Reissner-Nordström solution is obtained by choosing

H(~x) =

(
1 +

Q

ρ

)
,

and the field strength is given by F0i = ∂iH(~x).

4.5 Multi-centered Black Holes

One can in fact write a multi-centered Reissner-Nordström solution by choos-
ing a more general harmonic function

(4.6) H = 1 +
N∑
i=1

Qi

|~x− ~xi|
.

The total mass M equals the total charge Q and is given additively

(4.7) Q =
∑

Qi.

The solution is static because the electrostatic repulsion between different
centers balances the gravitational attraction between them.

4.6 Anti de Sitter Spacetime and Holography

Note that the coordinate ρ in the isotropic coordinates should not be con-
fused with the coordinate r in the spherical coordinates. In the isotropic
coordinates the line-element is

ds2 = −
(

1 +
Q

ρ

)2

dt2 + (1 +
Q

ρ
)−2(dρ2 + ρ2dΩ2),
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and the horizon occurs at ρ = 0. Contrast this with the metric in the
spherical coordinates (4.5) that has the horizon at r = Q. The near horizon
geometry is quite different from that of the Schwarzschild black hole. The
line element is

ds2 = − ρ
2

Q2
dt2 +

Q2

ρ2
(dρ2 + ρ2dΩ2)(4.8)

= (− ρ
2

Q2
dt2 +

Q2

ρ2
dr2) + (Q2dΩ2).(4.9)

The geometry thus factorizes as for the Schwarzschild solution. One factor
the 2-sphere S2 of radius Q but the other (r, t) factor is now not Rindler any
more but is a two-dimensional Anti-de Sitter or AdS2. The geodesic radial
distance in AdS2 is log r. As a result the geometry looks like an infinite
throat near r = 0 and the radius of the mouth of the throat has radius Q.

Extremal black holes are interesting because they are stable against Hawk-
ing radiation and nevertheless have a large entropy. We now try to see if the
entropy can be explained by counting of microstates. In doing so, supersym-
metry proves to be a very useful tool.



Chapter 5

Quantum Fields and Topology

5.1 Supersymmetric Quantum Mechanics

5.2 Topological Invariants

5.3 SCFT and Elliptic genus of K3

5.4 Combinatorics and Quantum Mechanics
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Chapter 6

Elements of String Theory

6.1 BPS states in N = 4 compactifications

Superstring theories are naturally formulated in ten-dimensional Lorentzian
spacetime M10. A ‘compactification’ to four-dimensions is obtained by tak-
ingM10 to be a product manifold R1,3×X6 whereX6 is a compact Calabi-Yau
threefold and R1,3 is the noncompact Minkowski spacetime. We will focus in
these lectures on a compactification of Type-II superstring theory when X6

is itself the product X6 = K3×T 2. A highly nontrivial and surprising result
from the 90s is the statement that this compactification is quantum equiv-
alent or ‘dual’ to a compactification of heterotic string theory on T 4 × T 2

where T 4 is a four-dimensional torus [21, 22]. One can thus describe the
theory either in the Type-II frame or the heterotic frame.

The four-dimensional theory in R1,3 resulting from this compactification
has N = 4 supersymmetry1. The massless fields in the theory consist of
22 vector multiplets in addition to the supergravity multiplet. The massless
moduli fields consist of the S-modulus λ taking values in the coset

(6.1) SL(2,Z)\SL(2;R)/O(2;R),

and the T-moduli µ taking values in the coset

(6.2) O(22, 6;Z)\O(22, 6;R)/O(22;R)×O(6;R).

1This supersymmetry is a super Lie algebra containing ISO(1, 3)×SU(4) as the bosonic
subalgebra where ISO(1, 3) is the Poincaré symmetry of the R1,3 spacetime and SU(4)
is an internal symmetry called R-symmetry in physics literature. The odd generators of
the superalgebra are called supercharges. With N = 4 supersymmetry, there are eight
complex supercharges which transform as a spinor of ISO(1, 3) and a fundamental of
SU(4).

44
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The group of discrete identifications SL(2,Z) is called S-duality group. In
the heterotic frame, it is the electro-magnetic duality group [23, 24] whereas
in the type-II frame, it is simply the group of area- preserving global diffeo-
morphisms of the T 2 factor. The group of discrete identifications O(22, 6;Z)
is called the T-duality group. Part of the T-duality group O(19, 3;Z) can
be recognized as the group of geometric identifications on the moduli space
of K3; the other elements are stringy in origin and have to do with mirror
symmetry.

At each point in the moduli space of the internal manifold K3 × T 2,
one has a distinct four- dimensional theory. One would like to know the
spectrum of particle states in this theory. Particle states are unitary irre-
ducible representations, or supermultiplets, of the N = 4 superalgebra. The
supermultiplets are of three types which have different dimensions in the
rest frame. A long multiplet is 256- dimensional, an intermediate multiplet
is 64-dimensional, and a short multiplet is 16- dimensional. A short mul-
tiplet preserves half of the eight supersymmetries (i.e. it is annihilated by
four supercharges) and is called a half-BPS state; an intermediate multiplet
preserves one quarter of the supersymmetry (i.e. it is annihilated by two su-
percharges), and is called a quarter-BPS state; and a long multiplet does not
preserve any supersymmetry and is called a non-BPS state. One consequence
of the BPS property is that the spectrum of these states is ‘topological’ in
that it does not change as the moduli are varied, except for jumps at certain
walls in the moduli space [25].

An important property of the BPS states that follows from the superal-
gebra is that their mass is determined by the charges and the moduli [25].
Thus, to specify a BPS state at a given point in the moduli space, it suffices
to specify its charges. The charge vector in this theory transforms in the vec-
tor representation of the T-duality group O(22, 6;Z) and in the fundamental
representation of the S-duality group SL(2,Z). It is thus given by a vector
Γiα with integer entries

(6.3) Γiα =

(
Qi

P i

)
where i = 1, 2, . . . 28; α = 1, 2

transforming in the (2, 28) representation of SL(2,Z)×O(22, 6;Z). The vec-
tors Q and P can be regarded as the quantized electric and magnetic charge
vectors of the state respectively. They both belong to an even, integral, self-
dual lattice Π22,6. We will assume in what follows that Γ = (Q,P ) in (6.3) is
primitive in that it cannot be written as an integer multiple of (Q0, P0) for
Q0 and P0 belonging to Π22,6. A state is called purely electric if only Q is
non-zero, purely magnetic if only P is non- zero, and dyonic if both P and
Q are non-zero.
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To define S-duality transformations, it is convenient to represent the S-
modulus as a complex field S taking values in the upper half plane. An
S-duality transformation

(6.4) γ ≡
(
a b
c d

)
∈ SL(2;Z)

acts simultaneously on the charges and the S-modulus by

(6.5)

(
Q
P

)
→
(
a b
c d

)(
Q
P

)
; S → aS + b

cS + d

To define T-duality transformations, it is convenient to represent the T-
moduli by a 28× 28 of matrix µAI satisfying

(6.6) µt Lµ = L

with the identification that µ ∼ kµ for every k ∈ O(22;R) × O(6;R). Here
L is the (28× 28) matrix

(6.7) LIJ =

 −C16 0 0
0 0 I6

0 I6 0

 ,

with Is the s× s identity matrix and C16 is the Cartan matrix of E8 × E8 .
The T-moduli are then represented by the matrix

(6.8) M = µtµ

which satisifies

(6.9) Mt =M, MtLM = L

In this basis, a T-duality transformation can then be represented by a (28×
28) matrix R with integer entries satisfying

(6.10) RtLR = L,

which acts simultaneously on the charges and the T-moduli by

(6.11) Q→ RQ; P → RP ; µ→ µR−1

Given the matrix µAI , one obtains an embedding Λ22,6 ⊂ R22,6 of Π22,6

which allows us to define the moduli-dependent charge vectors Q and P by

(6.12) QA = µAI QI PA = µAI PI .
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Note that whileQI are integersQA are not. In what follows we will not always
write the indices explicitly assuming that it will be clear from the context.
In any case, the final answers will only depend on the T-duality invariants
which are all integers. The matrix L has a 22-dimensional eigensubspace
with eigenvalue −1 and a 6- dimensional eigensubspace with eigenvalue +1.
Given Q and P , one can define the ‘right-moving’ charges2 QR and PR as
the projections of Q and P respectively onto the subspace with eigenvalue
+1 . and the ‘left-moving’ charges as projections onto the subspace with
eignevalue −1 . These definitions can be compactly written as

(6.13) QR,L =
(1± L)

2
Q ; PR,L =

(1± L)

2
P

The right-moving charges since for the heterotic string, QR are related to
the right-moving momenta. The central charges Z1 and Z2 of the N = 4
superalgebra can then be defined in terms of the right-moving charges and
moduli (For details of these definitions and the superalgebra, see §8.1 ).

If the vectors Q and P are nonparallel, then the state is quarter-BPS. On
the other hand, if Q = pQ0 and P = qQ0 for some Q0 ∈ Π22,6 with p and q
relatively prime integers, then the state is half-BPS.

An important piece of nonperturbative information about the dynamics
of the theory is the exact spectrum of all possible dyonic BPS- states at all
points in the moduli space. More specifically, one would like to compute the
number d(Γ)|λ,µ of dyons of a given charge Γ at a specific point (λ, µ) in the
moduli space. Computation of these numbers is of course a very complicated
dynamical problem. In fact, for a string compactification on a general Calabi-
Yau threefold, the answer is not known. One main reason for focusing on
this particular compactification on K3×T 2 is that in this case the dynamical
problem has been essentially solved and the exact spectrum of dyons is now
known. Furthermore, the results are easy to summarize and the numbers
d(Γ)|λ,µ are given in terms of Fourier coefficients of various modular forms.

In view of the duality symmetries, it is useful to classify the inequivalent
duality orbits labeled by various duality invariants. This leads to an interest-
ing problem in number theory of classification of inequivalent duality orbits
of various duality groups such as SL(2,Z)×O(22, 6;Z) in our case and more
exotic groups like E7,7(Z) for other choices of compactification manifold X6.
It is important to remember though that a duality transformation acts si-
multaneously on charges and the moduli. Thus, it maps a state with charge
Γ at a point in the moduli space (λ, µ) to a state with charge Γ′ but at some

2The right- moving charges couple to the graviphoton vector fields associated with the
right-moving chiral currents in the conformal field theory of the dual heterotic string.
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other point in the moduli space (λ′, µ′). In this respect, the half-BPS and
quarter-BPS dyons behave differently.

• For half-BPS states, the spectrum does not depend on the moduli.
Hence d(Γ)|λ′,µ′ = d(Γ)|λ,µ. Furthermore, by an S-duality transforma-
tion one can choose a frame where the charges are purely electric with
P = 0 and Q 6= 0. Single-particle states have Q primitive and the num-
ber of states depends only on the T-duality invariant integer n ≡ Q2/2.
We can thus denote the degeneracy of half-BPS states d(Γ)|S′,µ′ simply
by d(n).

• For quarter-BPS states, the spectrum does depend on the moduli, and
d(Γ)|λ′,µ′ 6= d(Γ)|λ,µ. However, the partition function turns out to be in-
dependent of moduli and hence it is enough to classify the inequivalent
duality orbits to label the partition functions. For the specific dual-
ity group SL(2,Z)× O(22, 6;Z) the partition functions are essentially
labeled by a single discrete invariant [26, 27, 28].

(6.14) I = gcd(Q ∧ P ) ,

The degeneracies themselves are Fourier coefficients of the partition
function. For a given value of I, they depend only on3 the moduli and
the three T-duality invariants (m,n, `) ≡ (P 2/2, Q2/2, Q · P ). Inte-
grality of (m,n, `) follows from the fact that both Q and P belong to
Π22,6. We can thus denote the degeneracy of these quarter-BPS states
d(Γ)|λ,µ simply by d(m,n, l)|λ,µ. For simplicity, we consider only I = 1
in these lectures. Generalization for higher I can be found in [29, 30].

6.2 Exercises

Elements of string compactifications

The heterotic string theory in ten dimensions has 16 supersymmetries. The
bosonic massless fields consist of the metric gMN , a 2-form field B(2), 16
abelian 1-form gauge fields A(r) r = 1, . . . 16, and a real scalar field φ called
the dilaton. The Type-IIB string theory in ten dimensions has 32 supersym-
metries. The bosonic massless fields consist of the metric gMN ; two 2-form
fields C(2), B(2); a self-dual 4-form field C(4); and a complex scalar field λ
called the dilaton-axion field.

3There is an additional dependence on arithmetic T-duality invariants but the degen-
eracies for states with nontrivial values of these T-duality invariants can be obtained from
the degeneracies discussed here by demanding S-duality invariance [28].
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One of the remarkable strong-weak coupling dualities is the ‘string-string’
duality between heterotic string compactified on T 4×T 2 and Type-IIB string
compactified on K3× T 2. One piece of evidence for this duality is obtained
by comparing the massless spectrum for these compactifications and certain
half-BPS states in the spectrum.

1. Show that the heterotic string compactified on T 4 × S1 × S̃1 leads a
four dimensional theory with N = 4 supersymmetry with 22 vector
multiplets.

2. Show that the Type-IIB string compactified on K3 × S1 × S̃1 leads a
four dimensional theory with N = 4 supersymmetry with 22 vector
multiplets.

3. Show that the Kaluza-Klein monopole in Type-IIB string associated
with the circle S̃1 has the right structure of massless fluctuations to
be identified with the half-BPS perturbative heterotic string in the dual
description.

6.3 String-String duality

It will be useful to recall a few details of the string-string duality between
heterotic compactified on T 4× S1× S̃1 and Type-IIB compactified on K3×
S1 × S̃1. Two pieces of evidence for this duality will be relevant to our
discussion.

• Low energy effective action

Both these compactifications result in N = 4 supergravity in four dimen-
sions. With this supersymmetry, the two-derivative effective action for the
massless fields receives no quantum corrections. Hence, if the two theories
are to be dual to each other, they must have identical 2-derivative action.

This is indeed true. Even though the field content and the action are very
different for the two theories in ten spacetime dimensions, upon respective
compactifications, one obtains N = 4 supergravity with 22 vector multiplets
coupled to the supergravity multiplet. This has been discussed briefly in one
of the tutorials. For a given number of vector multiplets, the two-derivative
action is then completely fixed by supersymmetry and hence is the same for
the two theories. This was one of the properties that led to the conjecture
of a strong-weak coupling duality between the two theories.

For our purposes, we will be interested in the 2-derivative action for the
bosonic fields. This is a generalization of the Einstein-Hilbert-Maxwell action
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(3.1) which couples the metric, the moduli fields and 28 abelian gauge fields:

I =
1

32π

∫
d4x
√
−detGS [RG +

1

S2
Gµν(∂µS∂νS −

1

2
∂µa∂νa)

+
1

8
GµνTr(∂µML∂νML)−Gµµ′Gνν′F (i)

µν (LML)ijF
(j)
µ′ν′(6.15)

− a
S
Gµµ′Gνν′F (i)

µνLijF̃
(j)
µ′ν′ ] i, j = 1, . . . , 28.

In the heterotic string picture, the expectation value of the dilaton field S is
related to the four-dimensional string coupling g4

(6.16) S ∼ 1

g2
4

,

and a is the axion field. The metric Gµν is the metric in the string frame and
is related to the metric gµν in Einstein frame by the Weyl rescaling

(6.17) gµν = SGµν

• BPS spectrum
Another requirement of duality is that the spectrum of BPS states should

match for the two dual theories. Perturbative states in one description will
generically get mapped to some non-perturbative states in the dual descrip-
tion. As a result, this leads to highly nontrivial predictions about the nonper-
tubative spectrum in the dual description given the perturbative spectrum
in one description.

As an example, consider the perturbative BPS-states in heterotic string
theory on K3 × S1 × S̃1. A heterotic string wrapping w times on S1 and
carrying momentum n gets mapped in Type-IIA to the NS5-brane wrapping
w times on K3×S1 and carrying momentum n. One can go from Type-IIA to
Type-IIB by a T-duality along the S̃1 circle. Under this T-duality, the NS5-
brane gets mapped to a KK-monopole with monopole charge w associated
with the circle S̃1 and carrying momentum n. This thus leads to a prediction
that the spectrum of KK-monopole carrying momentum in Type-IIB should
be the same as the spectrum of perturbative heterotic string discussed earlier.
We will verify this highly nontrivial prediction in the next subsection for the
case of w = 1.

6.4 Supersymmetry and extremality

Some of the special properties of external black holes can be understood
better by embedding them in supergravity. We will be interested in these
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lectures in string compactifications withN = 4 supersymmetry in four space-
time dimensions. The N = 4 supersymmetry algebra contains in addition
to the usual Poincaré generators, sixteen real supercharges which can be
grouped into 8 complex charges Qa

α and their complex conjugates. Here
α = 1, 2 is the usual Weyl spinor index of 4d Lorentz symmetry. and the
internal index a = 1, . . . , 4 in the fundamental 4 representation of an SU(4),
the R-symmetry of the superalgebra. The relevant anticommutators for our
purpose are

{Qa
α, Q̄β̇b} = −2Pµσ

µ

αβ̇
δab

{Qa
α, Q

b
β} = εαβZ

ab {Q̄α̇a, Q̄β̇b} = Z̄abεα̇β̇(6.18)

where σµ are (2 × 2) matrices with σ0 = −1 and σifori = 1, 2, 3 are the
usual Pauli matrices. Here Pµ is the momentum operator and Q are the
supersymmetry generators and the complex number Zab is the central charge
matrix.

Let us first look at the representations of this algebra when the central
charge is zero. In this case the massive and massless representation are
qualitatively different.

1. Massive Representation, M > 0, P µ = (M, 0, 0, 0)
In this case, (6.18) becomes {Qa

α, Q̄β̇b} = 2Mδαβ̇δ
a
b and all other anti-

commutators vanish. Up to overall scaling, these are the commutation
relations for eight complex fermionic oscillators. Each oscillator has a
two-state representation, which is either filled or empty. These states
together define a unitary irreducible representation, called a supermul-
tiplet, of the superalgebra. The total dimension of the representation
is 28 = 256 which is CPT self-conjugate.

2. Massless Representation M = 0, P µ = (E, 0, 0, E)
In this case (6.18) becomes {Qa

1, Q̄1̇b} = 2Eδab and all other anti-
commutators vanish. Up to overall scaling, these are now the anti-
commutation relations of four fermionic oscillators and hence the total
dimension of the representation is 24 = 16 which is also CPT-self-
conjugate.

The important point is that for a massive representation, with M = ε > 0,
no matter how small ε, the supermultiplet is long and precisely at M = 0 it
is short. Thus the size of the supermultiplet has to change discontinuously if
the state has to acquire mass. Furthermore, the size of the supermultiplet is
determined by the number of supersymmetries that are broken because those
have non-vanishing anti-commutations and turn into fermionic oscillators.
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Note that there is a bound on the mass M ≥ 0 which simply follows
from the fact the using (6.18) one can show that the mass operator on the
right hand side of the equation equals a positive operator, the absolute value
square of the supercharge on the left hand side. The massless representation
saturates this bound and is ‘small’ whereas the massive representation is
long.

There is an analog of this phenomenon also for nonzero Zab. As explained
in the appendix, the central charge matrix Zab can be brought to the standard
form by an U(4) rotation
(6.19)

Z̃ = UZUT , U ∈ U(4) , Z̃ab =

(
Z1ε 0
0 Z2ε

)
, ε =

(
0 1
−1 0

)
.

so we have two ‘central charges’ Z1 and Z2. Without loss of generality we
can assume |Z1| ≥ |Z2|. Using the supersymmetry algebra one can prove the
BPS bound M−|Z1| ≥ 0 by showing that this operator is equal to a positive
operator (see appendix for details). States that saturate this bound are the
BPS states. There are three types of representations:

• If M = |Z1| = |Z2|, then eight of of the sixteen supersymmetries are
preserved. Such states are called half-BPS. The broken supersymme-
tries result in four complex fermionic zero modes whose quantization
furnishes a 24-dimensional short multiplet

• If M = |Z1| > |Z2|, then and four out of the sixteen supersymmetries
are preserved. Such states are called quarter-BPS. The broken super-
symmetries result in six complex fermionic zero modes whose quanti-
zation furnishes a 26-dimensional intermediate multiplet.

• If M > |Z1| > |Z2|, then no supersymmetries are preserved. Such
states are called non-BPS.The sixteen broken supersymmetries result
in eight complex fermionic zero modes whose quantization furnishes a
28-dimensional long multiplet.

The significance of BPS states in string theory and in gauge theory stems
from the classic argument of Witten and Olive which shows that under suit-
able conditions, the spectrum of BPS states is stable under smooth changes
of moduli and coupling constants. The crux of the argument is that with
sufficient supersymmetry, for example N = 4, the coupling constant does
not get renormalized. The central charges Z1 and Z2 of the supersymmetry
algebra depend on the quantized charges and the coupling constant which
therefore also does not get renormalized. This shows that for BPS states,
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the mass also cannot get renormalized because if the quantum corrections in-
crease the mass, the states will have to belong a long representation . Then,
the number of states will have to jump discontinuously from, say from 16
to 256 which cannot happen under smooth variations of couplings unless
there is some kind of a ‘Higgs Mechanism’ or there is some kind of a phase
transition4

As a result, one can compute the spectrum at weak coupling in the re-
gion of moduli space where perturbative or semiclassical counting methods
are available. One can then analytically continue this spectrum to strong
coupling. This allows us to obtain invaluable non-perturbative information
about the theory from essentially perturbative commutations.

6.5 BPS dyons in N = 4 compactifications

The massless spectrum of the toroidally compactified heterotic string on T 6

contains 28 different “photons” or U(1) gauge fields – one from each of the
22 vector multiplets and 6 from the supergravity multiplet. As a result, the
electric charge of a state is specified by a 28-dimensional charge vector Q and
the magnetic charge is specified by a 28-dimensional charge vector P . Thus,
a dyonic state is specified by the charge vector

(6.20) Γ =

(
Q
P

)
where Q and P are the electric and magnetic charge vectors respectively.
Both Q and P are elements of a self-dual integral lattice Π22,6 and can be
represented as 28-dimensional column vectors in R22,6 with integer entries,
which transform in the fundamental representation of O(22, 6;Z). We will
be interested in BPS states.

• For half-BPS state the charge vectors Q and P must be parallel. These
states are dual to perturbative BPS states.

• For a quarter-BPS states the charge vectors Q and P are not parallel.
There is no duality frame in which these states are perturbative.

4Such ‘phase transitions’ do occur and the degeneracies can jump upon crossing certain
walls in the moduli space. This phenomenon called ‘wall-crossing’ occurs not because of
Higgs mechanism but because at the walls, single particle states have the same mass as
certain multi-particle states and can thus mix with the multi-particle continuum states.
The wall-crossing phenomenon complicates the analytic continuation of the degeneracy
from weak coupling from strong coupling since one may encounter various walls along the
way. However, in many cases, the jumps across these walls can be taken into account
systematically.
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There are three invariants of O(22, 6;Z), quadratic in charges, and given by
P 2, Q2 and Q · P . These three T-duality invariants will be useful in later
discussions.



Chapter 7

Spectrum of Half-BPS Dyons

An instructive example of BPS of states is provided by an infinite tower of
BPS states that exists in perturbative string theory [31, 32].

7.1 Perturbative half-BPS States

Consider a perturbative heterotic string state wrapping around S1 with wind-
ing number w and quantized momentum n. Let the radius of the circle be R
and α′ = 1, then one can define left-moving and right-moving momenta as
usual,

(7.1) pL,R =

√
1

2

( n
R
± wR

)
.

Recall that the heterotic strings consists of a right-moving superstring
and a left-moving bosonic string. In the NSR formalism in the light-cone
gauge, the worldsheet fields are:

• Right moving superstring X i(σ−) ψ̃i(σ−) i = 1 · · · 8

• Left-moving bosonic string X i(σ+), XI(σ+) I = 1 · · · 16,

whereX i are the bosonic transverse spatial coordinates, ψ̃i are the worldsheet
fermions, and XI are the coordinates of an internal E8 × E8 torus. A BPS
state is obtained by keeping the right-movers in the ground state ( that is,
setting the right-moving oscillator number Ñ = 1

2
in the NS sector and Ñ = 0

in the R sector).

The Virasoro constraints are then given by

55
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L̃0 −
M2

4
+
p2
R

2
= 0(7.2)

L0 −
M2

4
+
p2
L

2
= 0,(7.3)

where N and Ñ are the left-moving and right-moving oscillation numbers
respectively.

The left-moving oscillator number is then

(7.4) L0 =
∞∑
n=1

(
8∑
i=1

nai−na
i
n +

16∑
I=1

nβI−nβ
I
−n)− 1 := N − 1,

where ai are the left-moving Fourier modes of the fields X i, and βI are the
Fourier modes of the fields XI . Note that the right-moving fermions satisfy
anti-periodic boundary condition in the NS sector and have half-integral
moding, and satisfy periodic boundary conditions in the R sector and have
integral moding. The oscillator number operator is then given by

(7.5) L̃0 =
∞∑
n=1

8∑
i=1

(nãi−nã
i
n + rψ̃i−rψ̃

i
r −

1

2
) := Ñ − 1

2
.

with r ≡ −(n− 1
2
) in the NS sector and by

(7.6) L̃0 =
∞∑
n=1

8∑
i=1

(nãi−nã
i
n + rψ̃i−rψ̃

i
r)

with r ≡ (n− 1) in the R sector.
In the NS-sector then one then has Ñ = 1

2
and the states are given by

(7.7) ψ̃i− 1
2
|0 >,

that transform as the vector representation 8v of SO(8). In the R sector
the ground state is furnished by the representation of fermionic zero mode
algebra {ψi0, ψ

j
0} = δij which after GSO projection transforms as 8s of SO(8).

Altogether the right-moving ground state is thus 16-dimensional 8v⊕8s. From
the Virasoro constraint (7.2) we see that a BPS state with Ñ = 0 saturates
the BPS bound

(7.8) M =
√

2pR,
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and thus
√

2pR can be identified with the central charge of the supersymmetry
algebra. The right-moving ground state after the usual GSO projection is
indeed 16-dimensional as expected for a BPS-state in a theory with N = 4
supersymmetry.

We thus have a perturbative BPS state which looks pointlike in four
dimensions with two integral charges n and w that couple to two gauge fields
g5µ and B5µ respectively. It saturates a BPS bound M =

√
2pR and belongs

to a 16-dimensional short representation. This point-like state is our ‘would-
be’ black hole. Because it has a large mass, as we increase the string coupling
it would begin to gravitate and eventually collapse to form a black hole.

Microscopically, there is a huge multiplicity of such states which arises
from the fact that even though the right-movers are in the ground state,
the string can carry arbitrary left-moving oscillations subject to the Virasoro
constraint. Using M =

√
2pR in the Virasoro constraint for the left-movers

gives us

(7.9) N − 1 =
1

2
(p2
R − p2

L) := Q2/2 = nw.

We would like to know the degeneracy of states for a given value of charges
n and w which is given by exciting arbitrary left-moving oscillations whose
total worldsheet oscillator excitation number adds up to N . Let us take
w = 1 for simplicity and denote the degeneracy by d(n) which we want to
compute. As usual, it is more convenient to evaluate the canonical partition
function

Z(β) = Tr
(
e−βL0

)
(7.10)

≡
∞∑
−1

d(n)qn q := e−β .(7.11)

This is the canonical partition function of 24 left-moving massless bosons in
1 + 1 dimensions at temperature 1/β. The micro-canonical degeneracy d(N)
is given then given as usual by the inverse Laplace transform

(7.12) d(N) =
1

2πi

∫
dβeβNZ(β).

Using the expression (7.4) for the oscillator number s and the fact that

(7.13) Tr(q−sα−nαn) = 1 + qs + q2s + q3s + · · · = 1

(1− qs)
,

the partition function can be readily evaluated to obtain

(7.14) Z(β) =
1

q

∞∏
s=1

1

(1− qs)24
.
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It is convenient to introduce a variable τ by β := −2πiτ , so thatq := e2πiτ .
The function

(7.15) ∆(τ) = q
∞∏
s=1

(1− qs)24,

is the famous discriminant function. Under modular transformations

(7.16) τ → aτ + b

cτ + d
a, b, c, d ∈ Z , with ad− bc = 1

it transforms as a modular form of weight 12:

(7.17) ∆(
aτ + b

cτ + d
) = (cτ + d)12∆(τ) ,

This remarkable property allows us to relate high temperature (β → 0) to
low tempreature (β → ∞) and derive a simple explicit expression for the
asymptotic degeneracies d(n) for n very large.

7.2 Cardy formula

The degeneracy d(N) can be obtained from the canonical partition function
by the inverse Laplace transform

(7.18) d(N) =
1

2πi

∫
dβeβNZ(β).

We would like to evaluate this integral (7.18) for large N which corresponds
to large worldsheet energy. Such an asymptotic expansion of d(N) for large
N is given by the ‘Cardy formula’ which utilizes the modular properties of
the partition function.

For large N , we expect that the integral receives most of its contributions
from high temperature or small β region of the integrand. To compute the
large N asymptotics, we then need to know the small β asymptotics of the
partition function. Now, β → 0 corresponds to q → 1 and in this limit
the asymptotics of Z(β) are very difficult to read off from (7.14) because
its a product of many quantities that are becoming very large. It is more
convenient to use the fact that Z(β) is the inverse of ∆(τ) which is a modular
form of weight 12 we can conclude

(7.19) Z(β) = (β/2π)12Z(
4π2

β
).
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This allows us to relate the q → 1 or high temperature asymptotics to q → 0

or low temperature asymptotics as follows. Now, Z(β̃) = Z
(

4π2

β

)
asymp-

totics are easy to read off because as β → 0 we have β̃ →∞ or e−β̃ = q̃ → 0.
As q̃ → 0

(7.20) Z(β̃) =
1

q̃

∞∏
n=1

1

(1− q̃n)24
∼ 1

q̃
.

This allows us to write

(7.21) d(N) ∼ 1

2πi

∫ (
β

2π

)12

eβN+ 4π2

β dβ.

This integral can be evaluated easily using saddle point approximation. The
function in the exponent is f(β) ≡ βN + 4π2

β
which has a maximum at

(7.22) f ′(β) = 0 or N − 4π2

βc
= 0 or βc =

2π√
N
.

The value of the integrand at the saddle point gives us the leading asymptotic
expression for the number of states

(7.23) d(N) ∼ exp (4π
√
N).

This implies that the ensemble of such BPS states of a given charge vector
Q has nonzero statistical entropy that goes to leading order as

(7.24) Sstat(Q) := log(d(Q)) = 4π
√
Q2/2.

We would now like to identify the black hole solution corresponding to this
state and test if this microscopic entropy agrees with the macroscopic entropy
of the black hole.



Chapter 8

Mathematical Background

8.1 N = 4 supersymmetry

We summarize here some facts about the representation of the N = 4 super-
algebra. For more details see for example [60].

Massless supermultiplets

There are two massless representations that will be of interest to us.

1. Supergravity multiplet:
It contains the metric gµν , six vectors A

(ab)
µ , and two gravitini ψaµα.

2. Vector Multiplet:
It contains a vector Aµ, six scalar fields X(ab), and the gaugini χaα,

The low energy massless spectrum of a supergravity theory consists of the
supergravity multiplet and nv vector multiplets. Supersymmetry then com-
pletely fixes the form of the two derivative action. The compactification of
heterotic string theory on T 6 leads to a theory in four spacetime dimensions
with N = 4 supersymmetry and 28 abelian gauge fields which corresponds
to 28− 6 = 22 vector multiplets.

General BPS representations

In the rest frame of the dyon, the N = 4 supersymmetry algebra takes the
form
(8.1)
{Qa

α, Q
†b
β̇
} = Mδαβ̇ δ

ab , {Qa
α, Q

b
β} = εαβZ

ab , {Q†aα̇ , Q
†b
β̇
} = εα̇β̇Z̄

ab

60
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where a, b = 1, . . . 4 are SU(4) R-symmetry indices and α, β are Weyl spinor
indices. In a given charge sector, the central charge matrix encodes informa-
tion about the charges and the moduli. To write it explicitly, we first define
a central charge vector in C6

(8.2) Zm(Γ) =
1
√
τ2

(Qm
R − τPm

R ) , m = 1, . . . 6 ,

which transforms in the (complex) vector representation of Spin(6). Using
the equivalence Spin(6) = SU(4), we can relate it to the antisymmetric
representation of Zab by

(8.3) Zab(Γ) =
1
√
τ2

(QR − τPR)mλmab , m = 1, . . . 6

where λmab are the Clebsch-Gordon matrices. Since Z(Γ) is antisymmetric, it
can be brought to a block-diagonal form by a U(4) rotation

(8.4) Z̃ = UZUT , U ∈ U(4) , Z̃ab =

(
Z1ε 0
0 Z2ε

)
, ε =

(
0 1
−1 0

)
where Z1 and Z2 are non-negative real numbers. A U(2) rotation in the 12
plane and another U(2) rotation in the 34 plane will not change the block
diagonal form. Since ε is the invariant tensor of SU(2), the U(2) × U(2)
transformation can only change independently the phases of Z1 and Z2. We
will therefore treat more generally Z1 and Z2 as complex numbers.

We now split the SU(4) index as a = (r, i), where r, i = 1, 2 and i
represents the block number. Defining the following fermionic oscillators

(8.5) Aiα =
1√
2

(Q1i
α +εαβQ† 2i

β ), Biα =
1√
2

(Q1i
α −εαβQ

† 2i
β ) , Qa = Ua

b Q
b

the supersymmetry algebra takes the form

(8.6) {Ai†α̇ ,A
j
β} = (M + Zi) δα̇β δ

ij , {Bi†α̇ ,B
j
β} = (M − Zi) δα̇β δij

with all other anti-commutators being zero.
Let us conclude by giving an explicit representation for λmab. An SU(4)

rotation which rotates the supercharges, Q′ = UQ, acts on the Clebsch-
Gordon matrices as

(8.7) UλmUT = Rm
n(U)λm

where Rm
n is an SO(6) rotation matrix. The Clebsch-Gordon matrices λmab

are given by the components (CΓm)ab where Γm are the Dirac matrices of
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Spin(5) in the Weyl basis satisfying the Clifford algebra {Γm,Γn} = 2δmn,
and C is the charge conjugation matrix. The Gamma matrices are given
explicitly in terms of Pauli matrices by

Γ1 = σ1 × σ1 × 1 , Γ4 = σ2 × 1× σ1(8.8)

Γ2 = σ1 × σ2 × 1 , Γ5 = σ2 × 1× σ2(8.9)

Γ3 = σ1 × σ3 × 1 , Γ6 = σ2 × 1× σ3,(8.10)

where the The charge conjugation matrix is defined by CΓmC−1 = −Γm∗

(8.11) C = σ1 × σ2 × σ2, Γ = σ3 × 1× 1, CΓm =

(
λmab 0
0 λ̄m

ȧḃ

)
where the un-dotted indices transform in the spinor representation of Spin(6)
or the 4 of SU(4) whereas the the dotted indices transform in the conjugate
spinor representation of Spin(6) or the 4̄ of SU(4). The matrices λmab thus
defined have the required antisymmetry and transform properties as in (8.7).

8.2 Modular cornucopia

We assemble here together some properties of modular forms, Jacobi forms,
and Siegel modular forms.

Modular forms

Let H be the upper half plane, i.e., the set of complex numbers τ whose
imaginary part satisfies Im(τ) > 0. Let SL(2,Z) be the group of matrices

(8.12)

(
a b
c d

)
with integer entries such that ad− bc = 1.

A modular form f(τ) of weight k on SL(2,Z) is a holomorphic function
on H, that transforms as

(8.13) f(
aτ + b

cτ + d
) = (cτ + d)kf(τ) ∀

(
a b
c d

)
∈ SL(2,Z),

for an integer k (necessarily even if f(0) 6= 0). It follows from the definition
that f(τ) is periodic under τ → τ + 1 and can be written as a Fourier series

(8.14) f(τ) =
∞∑

n=−∞

a(n)qn , q := e2πiτ ,
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and is bounded as Im(τ)→∞. If a(0) = 0, then the modular form vanishes
at infinity and is called a cusp form. Conversely, one may weaken the growth
condition at ∞ to f(τ) = O(q−N) rather than O(1) for some N ≥ 0; then
the Fourier coefficients of f have the behavior a(n) = 0 for n < −N . Such a
function is called a weakly holomorphic modular form.

The vector space over C of holomorphic modular forms of weight k is
usually denoted by Mk. Similarly, the space of cusp forms of weight k and
the space of weakly holomorphic modular forms of weight k are denoted by
Sk and M !

k respectively. We thus have the inclusion

(8.15) Sk ⊂Mk ⊂M !
k .

The growth properties of Fourier coefficients of modular forms are known:

1. f ∈M !
k ⇒ an = O(eC

√
n) as n→∞ for some C > 0;

2. f ∈Mk ⇒ an = O(nk−1) as n→∞;

3. f ∈ Sk ⇒ an = O(nk/2) as n→∞.

Some important modular forms on SL(2,Z) are:

1. The Eisenstein series Ek ∈Mk (k ≥ 4). The first two of these are

E4(τ) = 1 + 240
∞∑
n=1

n3qn

1− qn
= 1 + 240q + . . . ,(8.16)

E6(τ) = 1− 504
∞∑
n=1

n5qn

1− qn
= 1− 504q + . . . .(8.17)

2. The discriminant function ∆. It is given by the product expansion

(8.18) ∆(τ) = q

∞∏
n=1

(1− qn)24 = q − 24q2 + 252q3 + ...

or by the formula ∆ = (E3
4 − E2

6) /1728.

The two forms E4 and E6 generate the ring of modular forms, so that any
modular form of weight k can be written (uniquely) as a sum of monomials
Eα

4E
β
6 with 4α+6β = k. We also have Mk = C ·Ek⊕Sk and Sk = ∆ ·Mk−12,

so that any f ∈ Mk also has a unique expansion as
∑

0≤n≤k/12

αnEk−12n ∆n

(with E0 = 1). From either representation, we see that a modular form is
uniquely determined by its weight and first few Fourier coefficients.
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Jacobi forms

Consider a holomorphic function ϕ(τ, z) from H×C to C which is “modular
in τ and elliptic in z” in the sense that it transforms under the modular
group as
(8.19)

ϕ(
aτ + b

cτ + d
,

z

cτ + d
) = (cτ + d)k e

2πimcz2

cτ+d ϕ(τ, z) , ∀
(
a b
c d

)
∈ SL(2;Z)

and under the translations of z by Zτ + Z as

(8.20) ϕ(τ, z + λτ + µ) = e−2πim(λ2τ+2λz)ϕ(τ, z), ∀ λ, µ ∈ Z ,

where k is an integer and m is a positive integer.

These equations include the periodicities ϕ(τ+1, z) = ϕ(τ, z) and ϕ(τ, z+
1) = ϕ(τ, z), so ϕ has a Fourier expansion

(8.21) ϕ(τ, z) =
∑
n,r

c(n, r) qn yr , (q := e2πiτ , y := e2πiz) .

Equation (8.20) is then equivalent to the periodicity property
(8.22)
c(n, r) = C(4nm−r2; r) , where C(d; r) depends only on r ( mod 2m) .

The function ϕ(τ, z) is called a holomorphic Jacobi form (or simply a
Jacobi form) of weight k and index m if the coefficients C(d; r) vanish for
d < 0, i.e. if

(8.23) c(n, r) = 0 unless 4mn ≥ r2 .

It is called a Jacobi cusp form if it satisfies the stronger condition that C(d; r)
vanishes unless d is strictly positive, i.e.

(8.24) c(n, r) = 0 unless 4mn > r2 ,

and conversely, it is called a weak Jacobi form if it satisfies the weaker con-
dition

(8.25) c(n, r) = 0 unless n ≥ 0

rather than (8.23).
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Theta functions

In this section, we collect definitions and useful properties of theta function.
The Jacobi theta function is defined by

(8.26) θ[ab ](v|τ) =
∑
n∈Z

q
1
2

(n−a)2e2πi(v−b)(n−a) ,

where a, b are real and q = e2πiτ . It satisfies the modular properties

θ[ab ](v|τ + 1) = e−iπa(a−1)θ[a
a+b− 1

2
](v|τ)(8.27)

θ[ab ]

(
v

τ
| − 1

τ

)
= e2iπab+iπ v

2

τ θ[ab ](v|τ)(8.28)

The Jacobi-Erderlyi theta functions are the values at half periods,
(8.29)

θ1(z|τ) = θ[
1
2
1
2

](z|τ), θ2(z|τ) = θ[
1
2
0 ](z|τ), θ3(z|τ) = θ[00](z|τ), θ4(z|τ) = θ[01

2
](z|τ)

In particular,

(8.30) θ1(v/τ,−1/τ) = i
√
−iτeiπv2/τθ1(v, τ)

The Dedekind η function is defined as

(8.31) η(τ) = q
1
24

∞∏
n=1

(1− qn) .

It satisfies the modular property

(8.32) η

(
−1

τ

)
=
√
−iτη(τ)

It is related to the Jacobi-Erderlyi theta functions by the identities

∂

∂v
θ1(v)|v=0 = 2π η3(τ)(8.33)

θ2(0|τ)θ3(0|τ)θ4(0|τ) = 2η3(8.34)

The partition function of a single left-moving boson is given by

(8.35) Zboson(τ) := Tr(qL0) =
1

η(τ)
.
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