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Satellite image from SeaWIFS showing surface Chl-a concentration on the
north-west coast of Africa around the Canary Islands. Notice the down-
stream cyclonic and anticyclonic eddies formed by the interaction of the
Canary Current with the islands and the coastal upwelling shedding fila-
ments and eddies.
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Chapter 1
Introduction

We shall discuss the basic principles and dynamics setting up the large-
scale ocean circulation. We will make use of all concepts we have devel-
oped in our previous courses (Geophysical Fluid Dynamics, Physics of the
Ocean) and we will probably see some topics that have been mentioned
in other courses (e.g., Atmospheric dynamics). But, repetita iuvant!. And
those same principles will be applied here to ocean dynamics, perhaps in
a revised way.

The large-scale ocean circulation can be broadly divided into two dif-
ferent kinds, a horizontal surface wind-driven circulation and a meridional deep
buoyancy- and wind-driven circulation, although the distinction is only a bad
approximation as they are intimately connected. This is particularly so for
the meridional overturning which is driven both by buoyancy and wind
at the surface.

Ocean circulation theory is based on the very same principles that drive
atmospheric circulation, and many theories have been borrowed from the
meteorological and atmospheric fields. Of course, the ocean is just another
geophysical fluid, and as such it is governed by all GFD conservation prin-
ciples, forces and instabilities you have been exposed already. There are
two main differences with respect to the atmosphere that are worth point-
ing out now.

• First, contrary to the atmosphere, the ocean is heated and cooled
from above (Fig. 1.1).

• Second, ocean circulation is often constrained by the presence of con-
tinents, and this will alter the structure and dynamics of the flow
(Fig. 2.2).

11



Figure 1.1: Net heat and freshwater fluxes computed from the
NCEP/NCAR reanalysis for the period 2010-2019 Kalnay et al. (1996).

Figure 1.2: Surface zonal and meridional components of the wind stress
computed from the NCEP/NCAR reanalysis for the period 2010-2019
Kalnay et al. (1996).

These two peculiarities will explain some of the differences between oceanic
and atmospheric circulation, as well as some geographical uniqueness in
ocean circulation.

The ocean is largely driven by surface wind stress (Fig. 1.2) –actually
not the stress but its curl! ... see later–, and common patterns arise in the
surface wind-driven large-scale circulation of all different basins (Fig. 1.4).
They all have just a few common ingredients, and these will qualitatively
explain the main features of the wind-driven gyres. The Southern Ocean
is a rather different story, and it will be discussed separately.

However, buoyancy forcing –the sum of surface heat and freshwater
fluxes (Fig. 1.1)– and the latitudinal extent of the ocean basins, will alter
the way the surface of each basin is buoyancy forced, with profound impli-
cations for the interior temperature and salinity structure as well as deep
circulations of the oceans (Fig. 2.2, Fig. 2.1). Once we have highlighted the
major circulations and their relations, a clear picture of the interior and
meridional circulation will also appear.

There is a good observational and theoretical understanding of the
major processes responsible for the Meridional Overturning Circulation
(MOC) (Fig. 1.6). This is not the same in each and every basin (Fig. 1.7),

Page 12



Figure 1.3: Zonal-mean of the climatological (2005-2012) Temperature and
Salinity for the Atlantic Ocean at 30W and Pacific Ocean at 170W from in
situ profile data (World Ocean Atlas 2013 version 2) at 0.25 degree hori-
zontal resolution.

and fundamental differences exist giving rise to shallow and deep circu-
lations, responsible for different degrees of meridional energy and mass
transports. Our present models capture these features reasonably well
(Fig. 1.8), although many small-scale effects are missing or poorly parame-
terized, and most importantly the variability of this circulation is not well
understood (let alone its future evolution!).
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Fig. 14.1 A schema of the main currents of the global ocean. Key: STG – SubTropical
Gyre; SPG – SubPolar Gyre; WBC – Western Boundary Current; ECS – Equatorial Current
System; NA – North Atlantic; SA – South Atlantic; NP – North Pacific; SP – South Pacific;
SI – South Indian; ACC – Antarctic Circumpolar Current; ATL – Atlantic; PAC – Pacific.
The figure is a qualitative, and not quantitative, representation of the actual flow.

From Vallis (2006)

From Vallis (2006)

Figure 1.4: A schema of the main currents of the global ocean [from Vallis
(2006)].
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Figure 1.5: Climatological mean (2005-2012) Sea Surface Temperature and
Sea Surface Salinity for the global ocean from in situ profile data (World
Ocean Atlas 2013 version 2) at 0.25 degree horizontal resolution.
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Fig. 16.17 A schema of the stratification and overturning circulation obtained by
combining the thermocline models of sections 16.1–16.4 with the model of deep
overturning of section 16.5. Key: DP – Drake Passage; EL – Ekman layer; VT – venti-
lated thermocline; IT – internal thermocline; AABW – Antarctic Bottom Water; AAIW –
Antarctic Intermediate Water; NADW – North Atlantic Deep Water: MW – Mode Water.
The shaded regions mark the main regions of stratification and the Drake Passage.
The real ocean is more complex; see text.

From Vallis (2006)

From Vallis (2006)

Figure 1.6: A schema of the stratification and overturning circulation.
[from Vallis (2006)]

Figure 1.7: A schema of the thermohaline circulation (THC), or the Merid-
ional Overturning Circulation (MOC). [from Kuhlbrodt et al. (2007)]
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Figure 1.8: The global MOC as computed from a Coupled General Circu-
lation Model (CGCM). We clearly see the presence of the North Atlantic
Deep Water cell, the interhemispheric meridional circulation, a locally-
circulating deacon Cell, and two SubTropical Cells. Each meridional cell
is driven by different dynamics and all together set up the global ocean
circulation.
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Chapter 2
Thermodynamics of Seawater

2.1 Thermodynamics of seawater

2.2 Temperature, Salinity, Density and Stratifica-
tion

2.2.1 Buoyancy frequency
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Figure 2.1: Climatological mean (2005-2012) Sea Surface Temperature and Sea
Surface Salinity for the global ocean from in situ profile data (World Ocean Atlas
2013 version 2) at 0.25 degree horizontal resolution.
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Figure 2.2: Zonal-mean of the climatological (2005-2012) Temperature and
Salinity for the Atlantic Ocean at 30W and Pacific Ocean at 170W from in situ
profile data (World Ocean Atlas 2013 version 2) at 0.25 degree horizontal resolu-
tion.
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Chapter 3
Fundamental tools

We have already discussed the Geostrophic equations, or geostrophic bal-
ance, in previous courses (Geophysical Fluid Dynamics, and maybe in At-
mospheric Dynamics too!), but it is good to restate our assumptions and
starting point (repetita iuvant!).

3.1 Kinematics

• In the LAGRANGIAN description of motion, one essentially follows
the history of an individual particle. A flow variable F(r0, t) and its
velocity is given by ui = d(ri)/dt

• In the EULERIAN description one focuses on what happens at a spa-
tial point r, so the flow variable is F(r, t).

• In the Eulerian case, d/dt gives the local rate of change of F at each
point r and is not the total rate of change seen by a fluid particle ...
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3.1.1 Lagrangian Derivative

We seek to calculate the rate of change of F at each point following a par-
ticle of fixed identity.

DF
Dt

=
∂F
∂t

+ ui
∂F
∂xi

(3.1)

The Lagrangian Derivative DF
Dt is made of (1) the local rate of change at

a given point (zero for steady flows...) and (2) the advective derivative.
∂F
∂t is the local rate of change of F at a given point.
ui

∂F
∂xi

is the advective derivative, it is the change in F as a result of ad-
vection of the particle from one location to another where F is different.

3.1.2 Streamlines and streamfunctions

The streamline

• At t = t0, streamlines are curves that are tangent to direction of flow.

• For unsteady flows, streamlines change with time.

Let ds = (dx, dy, dz) be an element of arc length along a streamline,
and let u = (u, v, w) be the local velocity vector along that streamline,
then dx/u = dy/v = dz/w.

• Close to a solid boundary, streamlines are parallel to that boundary.

• The direction of the streamline is the direction of the fluid velocity.

• Fluid can not cross a streamline.
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• Streamlines can not cross each other.

• Any particle starting on one streamline will stay on that same stream-
line.

• In unsteady flow, streamlines can change position with time.

• Streamlines are a family of curves that are instantaneously tangent
to the velocity vector of the flow. These show the direction a fluid
element will travel in at any point in time.

• Pathlines are the trajectories that individual fluid particles follow.
These can be thought of as a ”recording” of the path a fluid element
in the flow takes over a certain period. The direction the path takes
will be determined by the streamlines of the fluid at each moment in
time.

• For a steady flow, the two are the same.

The streamfunction

3.1.3 (Gauss’) Divergence theorem

The theorem relates a volume integral to a surface integral. Consider a vol-
ume V bounded by a closed surface A. Consider an infinitesimal surface
element dA whose outward unit normal is n. The vector ndA has magni-
tude dA and direction n.

(Instead of using Eq. (2.12), all the components of E in the rotated system can be 
found by carrying out the matrix product CT E C.) The matrix of E in the rotated 
frame is therefore 

The foregoing matrix contains only diagonal terms. It will be shown in the next 
chapter that it represents a linear stretching at a rdte r along one principal axis, and a 
linear compression at a rate -I? along the other; there are no shear strains along the 
principal axes. 

13. Cuuss’ Theorem 

Tbis very useful theorem relates a volume integral to a surface integral. Let V be a 
volume bounded by a closed surface A .  Consider an infinitesimal surface element 
dA, whose outward unit normal is n (Figure 2. IO). The vector n d A  has a magnitude 
d A  and direction n, and we sball write d A  to mean the same thing. Let Q(x) be a 
scalar, vector, or tensor field of any order. Gauss’ theorem states that 

(2.30) 

ndA- dA 

Figum 2.10 Illustration of Gauss’ Ihcorcrn. Gauss’ theorem states that the volume integral of the divergence of Q
is equal to the surface integral of the outflow of Q.∫

v

∂Q
∂xi

dV =
∫

A
dAiQ (3.2)
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For a vector Q: ∫
v

∂Qi

∂xi
dV =

∫
A

dAiQ , (3.3)

which is now called the Divergence Theorem. In vector notation∫
v
∇ ·Q dV =

∫
A

dA ·Q (3.4)

3.1.4 Stokes’ theorem

The theorem relates a surface over an open surface to a line integral. Con-
sider an open surface A, with bounding curve C. Let dr be an element of
the bounding curve whose direction is that of the tangent.

14. SlOlCl?#’ I ’ h n m 1  45 

where terms of second order in the increments have been neglected as they will vanish 
in the limits. Carrying out the limits, we obtain 

Hem, the physical interpretation of the divergence as the net outward flux of a vector 
field pcr unit volume has been made apparent by its evaluation through the integral 
definition. 

This lcvel of detail is required to obtain the gradient correctly in these coordinates. 

14. Stokex ’ Theorem 

Stokcs’ theorem relates a surface integral ovcr an open surface to a line integral 
around thc boundary curve. Consider an open surface A whose bounding curve is C 
(Figure 2.1 1 ). Choose one side of the surface to be the outside. Let ds be an element of 
the bounding curve whose magnitude is the length of the element and whose direction 
is that of the tangent. The positive sense of the tangent is such that, when seen from 
the “outside” of the surfacc in the direction of the tangent, the interior is on the left. 
Thcn the theorem stales that 

(2.34) 

which signifies that thc surface integral of the curl of a vector field u is equal to the 
line integral of u along thc bounding curve. 

The line integral of a vector u around a closed curve C (as in Figure 2.1 1) is called 
the “circulation of u about C.” This can be used to define the curl o€ a vector through 

I$ 

Figurc 2.11 lllustrdlion of SLokCs’ thcorcm. Stokes’ theorem states that∫
A
(∇×F) · dA =

∫
C

F · dr (3.5)

the surface integral of the curl of a vector field F is equal to the line integral
of F along the bounding curve. The line integral of a vector around a
closed curve C is the circulation of the field about C.

Prove that div(curl u) = 0, for any vector u.
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3.2 The equations of motion

There can be two kind of forces acting on fluids. Body forces, and we will
restrict our attention, for now, to gravitational force per unit mass

g = −∇(gz) = −k̂
∂(gz)

∂z
= −k̂g (3.6)

and surface forces, which can be normal or tangential to the fluid. Normal
forces will be relate to pressure, whereas tangential forces will be related
to shear stresses.

In order to derive a principle of conservation of momentum we will
start by applying Newton’s law of motion to an infinitesimal element of
fluid. The continuity equation, for an element of fluid of constant density
is

∂ρ

∂t
+∇ · (ρu) = 0 (3.7)

and we multiply this by u:

∂(ρu)
∂t

+
∂(ρu2)

∂x
+

∂(ρuv)
∂y

+
∂(ρuw)

∂z
= fx (3.8)

∂(ρv)
∂t

+
∂(ρvu)

∂x
+

∂(ρv2)

∂y
+

∂(ρvw)

∂z
= fy (3.9)

∂(ρw)

∂t
+

∂(ρwu)
∂x

+
∂(ρwv)

∂y
+

∂(ρw2)

∂z
= fz (3.10)

(3.11)

which for a constant density reduces to

ρ

(
∂

∂t
+ u · ∇

)
u = f (3.12)

If we express our body force per unit volume ρg, we arrive to the
Cauchy equation of motion

ρ
D ui

D t
= ρgi +

∂τij

∂xj
(3.13)

where the stress tensor τij includes all surface forces. Using the constitu-
tive equation for a Newtonian fluid, we now arrive to the Navier-Stokes
equation

ρ
D ui

D t
= ρg−∇p + µ∇2u (3.14)
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which reduces to the Euler equation under the assumption of frictionless
flow

ρ
D ui

D t
= ρg−∇p (3.15)

3.2.1 Motion in a rotating frame of reference

Eq.3.28 is valid for an inertial or fixed frame of reference. But in GFD we
measure positions and velocities relative to a frame of reference fixed on
the surface of the Earth, which rotates w.r.t. to a frame inertial.

Let’s have a frame of reference (x1, x2, x3) rotating at a uniform angular
velocity Ω w.r.t. a fixed frame (X1, X2, X3). Any vector P is represented by

P = P1i1 + P2i2 + P3i3 (3.16)

For a fixed observer, the directions of the rotating unit vectors (i1, i2, i3)
change with time. The time derivatives of P is thus(

dP
dt

)
F
=

d
dt
(P1i1 + P2i2 + P3i3) =

i1
dP1
dt

+ i2
dP2
dt

+ i3
dP3
dt

+ P1
di1
dt

+ P2
di2
dt

+ P3
di3
dt

(3.17)

X1

X2

X3

x1

x2

x3

i2

i3

i1

Ω

Figure 3.1: Coordinate frame (x1, x2, x3) rotating at angular velocity Ω with
respect to a fixed frame (X1, X2, X3).
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For an observer rotating with (x1, x2, x3) the rate of change of P is equal
to the first three terms in Eq.3.17, and so(

dP
dt

)
F
=

(
dP
dt

)
R
+ P1

di1
dt

+ P2
di2
dt

+ P3
di3
dt

(3.18)

Each unit vector i traces a cone with radius sin α, where α is a constant
angle. i changes in time dt as di = sin αdθ which is the length travelled by
the top of i. The rate fo change is thus

di
dt

= sin α

(
dθ

dt

)
= sin αΩ (3.19)

The direction of the rate of change is thus perpendicular to the plane (Ω, i),
hence

di
dt

= Ω× i (3.20)

for any rotating vector i, giving us(
dP
dt

)
F
=

(
dP
dt

)
R
+ P×Ω (3.21)

Applying this rule to the position vector r(
dr
dt

)
F
=

(
dr
dt

)
R
+ r×Ω (3.22)

or
uF = uR + r×Ω (3.23)

Applying this rule to the velocities(
duF

dt

)
F
=

(
duF

dt

)
R
+ uF ×Ω (3.24)

(
duF

dt

)
F
=

d
dt

(uR + r×Ω)R + Ω× (uR + r×Ω) (3.25)

Hence, accelerations in the two frames are relates as

aF = aR + 2Ω× uR −Ω2r (3.26)

The second term of the r.h.s is the Coriolis acceleration and the last term
the centripetal acceleration. This last term is added to the Newtonian grav-
ity as an effective gravity

g = gn + Ω2r (3.27)
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The apparent force Ω2r will be zero at the poles.
The momentum equations are now

D u
D t

= g− 1
ρ
∇p + ν∇2u− (2Ω× u) (3.28)

It is clear that the Coriolis force (−2Ω× u) will deflect a particle to the
right of its direction in the northern hemisphere (right-hand rule). As the
Coriolis force constantly acts normal to the fluid path, it will not accelerate
the particle (in fact, Coriolis does not play any role in the conservation of
mechanical energy ...).

3.2.2 Thin shell approximation

A scale analysis of the continuity equation reveals that, for typical length
scales much larger than typical vertical scales, L � H, horizontal veloci-
ties must be much larger than the vertical ones, U �W.

Now, decomposing the angular velocity vector into its three compo-
nents (Fig.3.2), we have

Ωx = 0
Ωy = Ω cos θ

Ωz = Ω sin θ

The Coriolis term, assuming U �W, has the following components

2Ω× u = 2Ω
[
(−v sin θ)î + (u sin θ) ĵ− (u cos θ)k̂

]
(3.29)

and defining the Coriolis parameter as f = 2Ω sin θ, which is now clearly
twice the angular velocity and hence a (planetary) vorticity

2Ω× u = (− f v)î + ( f u) ĵ− (2Ωu cos θ)k̂ (3.30)

But the vertical component of the Coriolis force, 2Ωu cos θ, is negligible
compared to the dominant terms in the vertical equation of motion, namely
the pressure gradient and the gravitational acceleration. Our final set of
momentum equations reduces to

D u
D t
− f v = −1

ρ

∂p
∂x

+ ν∇2u (3.31)

D v
D t

+ f u = −1
ρ

∂p
∂y

+ ν∇2v (3.32)

D w
D t

= −1
ρ

∂p
∂z
− g + ν∇2w (3.33)
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Figure 3.2: Components of the angular velocity vector for a point on the sphere.

Or
D u
D t

+ 2Ω× u = −1
ρ
∇p− g + ν∇2u (3.34)

where ν = µ/ρ is the kinematic viscosity.

3.2.3 The β-plane

A first approximation is to set the Coriolis parameter, f , to a constant
value. This approximation, denoted the f -plane, is useful in some very
idealized studies when the westward propagation of disturbances is not
of interest or it is purposely neglected. But for large-scale dynamics it
is not appropriate, when flows occurring over large horizontal scales are
of interest. Rossby waves depend on variations of f , it is their restoring
mechanism, for example, and the large-scale dynamics of the ocean will
this be affected by latitudinal variations in the Coriolis parameter. An ap-
proximation can be done, however, to make equations more tractable, and
it consists of considering a cartesian plane over which f does vary, so ne-
glecting spherical coordinates.

The β-plane approximation is useful to avoid the sphericity and stay-
ing in a cartesian plane, yet retaining the dynamical effects of sphericity
itself.
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Figure 3.3: A cartesian reference system (x,y,z) and its associated spherical sys-
tem (r, θ, φ) around the point (a, θ0, φ0). The plane z = 0 (or β-plane) is tangent
to the sphere around the point (a, θ0, φ0). The approximation tan(θ − θ0) ≈
(θ − θ0) is well justified for small variations in latitude. On the β-plane, the ro-
tation vector is kΩ sinθ, where sinθ ≈ sinθ0 + (y/a)cosθ0.

The plane z = 0, what will be called the β-plane is tangent to the sphere
in (a, θ0, φ0). For small variations in latitude we can approximate tan(θ −
θ0) ≈ θ − θ0. hence, our meridional cartesian coordinate is

y = a(θ − θ0)

z = r− a
x = (φ− φ0)a cosθ0,

where r is the distance of the fluid from the center of the sphere, θ is the
latitude, φ the longitude, and a is the radius of the Earth.

Hence, latitude θ is a linear function of y

θ = θ0 +
y
a

. (3.35)

Now, for small variations in latitude we have:

sinθ ≈ sinθ0 + cosθ0
y
a

, (3.36)

as a truncated series around θ0. And we can express f as the following:

f = 2Ωsinθ = 2Ωsinθ0 +
2Ω
a

cosθ0 y = f0 + β y. (3.37)
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Figure 3.4: The Coriolis parameter f and its meridional gradient β as a function
of latitude.

Where we have introduced β = 2Ω
a cosθ0.

But what is β? We have gone from f = 2Ωsinθ to f = f0 + βy. The
dependence of f on latitude is conserved because of the linear relation-
ship between f and y. This is an important result: we are not working
on spherical coordinates but the dynamical effects of sphericity are re-
tained.

β is called the gradient of planetary vorticity given that:

∂ f
∂y

(θ = θ0) =
1
a

∂ f
∂θ

(θ = θ0) =
2Ω
a

cosθ0 = β. (3.38)

Typical mid-latitude values for f and β are 10−4 s−1 and 10−11 m−1s−1

(Fig. 3.4).
In conclusion, we have the β-plane approximation as

f = f0 + βy (3.39)

For relatively large areas, with θ varying over a few tens of degrees, be-
tween mid-latitudes and the equator, the tangent plane approximation is
called β-plane. This approximation is only valid if

βy� f0 or
βy
f0
� 1. (3.40)

For even smaller variations in θ the f -plane is used, where

f = f0 = 2Ω sinθ0. (3.41)
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3.3 Kinematical and dynamical approximations

3.3.1 Hydrostatic balance

The vertical component (the component parallel to the gravitational force,
g) of the momentum equation is

D w
D t

= −1
ρ

∂p
∂z
− g, (3.42)

where w is the vertical component of the velocity and g = −gk. If the
fluid is static the gravitational term is balanced by the pressure term and
we have

∂p
∂z

= −ρg, (3.43)

which is called the hydrostatic balance, or hydrostasy. Scaling analysis shows
that the hydrostatic balance is the dominant balance within the vertical
momentum equation , so long as the vertical length scales of motion are
much smaller than the horizontal length scales. Such scales are relevant for
large-scale ocean climate modeling, and global ocean models typically as-
sume a hydrostatic balance, and this constitutes a basic assumption of the
primitive equations. Integrating the hydrostatic balance vertically from
the ocean surface η determines the pressure at a point in the ocean column

p(z) = pa + g
∫ η

z
dz′ρ(z′), (3.44)

where pa is the sea surface pressure resulting from external forcing (e.g.,
atmospheric loading, sea ice, ...).

Scaling and aspect ratio

For a Boussinesq fluid, the momentum equations are

D u
D t

+ f× u = −∇φ (3.45)

D w
D t

= −∂φ

∂z
+ b, (3.46)

where φ = p/ρ0 and buoyancy b = −gρ/ρ0. In the case of f = 0 the
horizontal momentum equation reduces to

D u
D t

= −∇φ (3.47)
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and a scaling for the horizontal equation is

U
T
∼ Φ

L
, or

LU
T
∼ Φ, or U2 ∼ Φ. (3.48)

Using mass conservation to scale vertical velocities we obtain

∇z · u +
∂w
∂z

= 0. (3.49)

A scaling of this equation is

U
L
+

W
H

= 0 (3.50)

W =
H
L

U = αU (3.51)

where α ≡ H
L is the aspect ratio between the typical horizontal and vertical

scales. The advective terms in the vertical momentum equation scale as

D w
D t
∼ W

T
=

U
L

W =
U
L
(

H
L

U) =
U2H

L2 . (3.52)

Now we can use the scaling for the horizontal and vertical motions, to-
gether with the aspect ratio of their typical scales, to reveal the condition
for hydrostasy.

For hydrostatic balance to hold, the ratio of advective terms to the pres-
sure gradient term in (3.46) must be

|D w
D t |
| ∂φ

∂z |
� 1 (3.53)

This implies that

|D w
D t |
| ∂φ

∂z |
∼ U2H/L2

U2/H
∼
(H

L

)2
� 1. (3.54)

In other words, the aspect ratio should be

α2 ≡
(H

L

)2
� 1 (3.55)

for the advective terms in the vertical momentum to be neglected. The
hydrostatic balance is then a small aspect ratio approximation.
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3.3.2 Hydrostatic approximation

3.3.3 Shallow water approximation

3.3.4 Boussinesq approximation

3.3.5 Rigid lid approximation

3.4 Rossby number

We consider the dynamical balance in the horizontal components of the
momentum equation. In the horizontal plane (along geopotential sur-
faces) we find that the Coriolis term is much larger than the advective
terms and the dominant balance is between Coriolis and the horizontal
pressure force. The balance is called geostrophic balance, and it occurs when
the Rossby number is small.

The horizontal momentum equation is

∂u
∂t

+ (v · ∇)u + f× u = −1
ρ
∇z p, (3.56)

where v = (u, v, w) and u = (u, v, 0). A scaling analysis of the second
(U2/L) and third ( f U) terms, where U is the approximate magnitude of
the horizontal velocities and L is a typical length scale over which that
velocity varies, reveals the importance of rotation. The ratio of the sizes of
the advective and Coriolis terms defines the Rossby number:

Ro ≡ U
f L

(3.57)

The Rossby number characterizes the importance of rotation in a fluid.
It is the ratio of the magnitude of the relative acceleration to the Corio-
lis acceleration, and it is of fundamental importance in geophysical fluid
dynamics.

3.5 Geostrophic and Thermal Wind Balance

If the Rossby number is sufficiently small, then the rotation term domi-
nates the nonlinear advection term, and if the time period of the motion
scales advectively (or there are no accelerations) then the rotation term also
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Figure 3.5: Schematic of a geostrophically balanced flow with a positive
value of the Coriolis parameter f . Flow is parallel to the lines of constant
pressure. Cyclonic flow is anticlockwise around a low pressure region.
[from Vallis (2006)]

dominates the local time derivative. The only term that can then balance
the rotation term is the pressure term, leaving us with

f v ≈ 1
ρ

∂p
∂x

(3.58)

f u ≈ −1
ρ

∂p
∂y

. (3.59)

This balance is known as geostrophic balance, and is one of the pillars of
geophysical fluid dynamics. We can now define geostrophic velocities as

f ug = −1
ρ

∂p
∂y

f vg =
1
ρ

∂p
∂x

(3.60)

and for flows with a low Rossby numbers, u ≈ ug and v ≈ vg.
A geostrophic flow is parallel to lines of constant pressure (isobars). If

f > 0, after a pressure gradient is initiated somehow, the fluid starts to
move down the gradient. Then, the fluid experiences the Coriolis force to
the right and therefore swings to the right. The fluid eventually moves
along isobars (along the slope, not down it), with the pressure force down
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the slope balanced by the Coriolis force up the slope. In the northern hemi-
sphere, the flow is anticlockwise round a region of low pressure and clock-
wise around a region of high pressure.

Consider now a plane horizontal flow in which density does not vary
along the fluid path (the Boussinesq approximation). In this case the con-
tinuity equation reduces to

∂u
∂x

+
∂v
∂y

= 0. (3.61)

We can now define a function ψ(x, y, t) such that

u ≡ −∂ψ

∂y
, (3.62)

v ≡ ∂ψ

∂x
, (3.63)

and Eq.3.61 is thus satisfied, and this is called a streamfunction.
Returning to our geostrophic balance, if the Coriolis force is constant

and if density does not vary in the horizontal, the geostrophic flow is hor-
izontally non-divergent

∇z · ug =
∂ug

∂x
+

∂vg

∂y
= 0, (3.64)

and we may define a geostrophic streamfunction, ψg, by ψg ≡ p
f ρ , and

ug ≡ −
∂ψ

∂y
, vg ≡

∂ψ

∂x
. (3.65)

Thermal wind

Thermal wind balance arises when combining the geostrophic and hydro-
static approximations. They are useful in elucidating how temperature
differences in the horizontal can lead to vertical variations in geostrophic
velocities, hence the term thermal wind equations.

Taking the vertical derivative of the geostrophic equations for a Boussi-
nesq fluid

ρ0 f ∂zu = −∂z
∂p
∂y

(3.66)

ρ0 f ∂zv = ∂z
∂p
∂x

. (3.67)
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Figure 3.6: Schematic of thermal wind balance in the northern hemisphere.
Shown are surfaces of constant density, or isopycnals. Density increases
with depth and latitude, ρ3 > ρ2 > ρ1. The termal wind associated
with this density field is eastward, or out of the page, and decreases with
depth. The same eastward thermal wind velocity would have resulted in
the southern hemisphere, with ρy < 0 and f < 0.

Combining these with the hydrostatic balance, ∂z p = −ρg, and changing
the order of differentiation for p, gives

ρ0 f ∂zu = g ∂yρ (3.68)
ρ0 f ∂zv = −g ∂xρ. (3.69)

These equations represent the thermal wind balance, and the vertical deriva-
tive of the geostrophic wind is the ‘thermal wind’. Thermal wind balance
says that the geostrophic velocity has a vertical thermal wind shear in
case where density has a horizontal gradient.

In general, zonally averaged ocean temperature decrease poleward due
to the differential heating received from solar radiation. Neglecting salin-
ity effects on density, this poleward reduction in temperature corresponds
to a poleward increase in density. Also, for a stably stratified fluid, density
increases with depth. In a zonally-averaged flow, ∂xρ = 0, and so thermal
wind reduces to

∂zu =
g

ρ0 f
∂yρ (3.70)

This equation is telling us that, if temperature falls in the poleward direc-
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tion, ∂yρ > 0, then the zonally-averaged thermal wind is eastward. Wind
shear also increases as we move upward in the ocean, ∂zu > 0, which
yields a surface intensified zonal velocity field. Thermal wind, although
diagnostic, represents a valid steady state balance of a frictionless rotat-
ing fluid. That is, in the presence of rotation, a flow can exist in steady
state with nonflat isopycnals. Vertical integration of the thermal wind re-
lation, along with knowledge of the geostrophic velocity at a point along
the integration path, allows for determination of the full geostrophic ve-
locity in terms of density. However, the baroclinic density field (with a
horizontal gradient) is related to the baroclinic component of the velocity
field through thermal wind balance. The barotropic flow component has
zero vertical shear.

3.6 The Rossby radius

The Rossby radius of deformation is a length scale of fundamental impor-
tance in atmosphere-ocean dynamics. It describes the horizontal scale at
which rotation effects become as important as buoyancy effects. For exam-
ple, in the first stage of an adjustment problem, first the disturbance has a
small structure and gravity dominates with a very large pressure gradient.
Later, as the perturbation spreads over a larger horizontal scale, Coriolis
becomes more important and of similar magnitude as the pressure gra-
dient, and thus rotation causes a response that is much different from a
non-rotating case.

Using a geostrophic flow, it is easy to show that the Rossby radius of
deformation, Ld, is

Ld = c/| f | = (gH)1/2/| f | (3.71)

where c is the phase speed of the gravity wave. For the deep ocean, where
H= 4 km and c= 200 m/s, the Rossby radius is about 2000 km. Which is
much larger than depth, so the hydrostatic approximation is valid. How-
ever, the ocean is not only in rotation but also stratified, and so what is
more important is not the barotropic radius of deformation but rather the
baroclinic ones

Ld = cn/| f | (3.72)

where cn are baroclinic gravity wave phase speeds. So the Rossy radius is
directly related to the phase speed of long, baroclinic gravity waves, which
is also a very useful parameter in the study of ocean wave dynamics. A
global atlas of the first baroclinic gravity-wave phase speed, c, has been
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computed on a 1-degree global grid from observations (Fig. 3.7) as follows

cn ∼
1

nπ

∫ 0

−H
N dz (3.73)

where N is the buoyancy frequency.
Now, the first baroclinic Rossby radius, given that c1=1-3 m/s, is Ld ∼10-

30 km with values increasing towards low latitudes (Fig. 3.8). Mesoscale
eddies have the size of the first baroclinic Rossby radius, therefore in order
to resolve mesoscale eddies and associated fluxes, ideally an ocean model
should have at least two grid points within Ld. It is clear from Fig. 3.9
that standard global ocean model can resolve mesoscale fluxes up to∼25◦,
poleward of that latitude fluxes need to be parameterized. Benefits of hav-
ing fine-resolution ocean models is illustrated in Fig. 3.10, where eddies
and filaments are ubiquitous in the fine-resolution version of the model
whereas a laminar ocean is simulated in the (standard!) 1◦ version.
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Figure 3.7: A global map of the first baroclinic gravity wave phase speed
and its zonal mean. [data from Chelton et al., 1998]
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Figure 3.8: A global map of the first baroclinic Rossby radius of deforma-
tion and its zonal mean. [data from Chelton et al., 1998]
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of spin-up from climatology. At the coarse resolution that is typical
of the ocean components of CMIP5 coupled climate models (nom-
inally 1! resolution), an ocean model only resolves the deformation
radius in deep water in a narrow band within a few degrees of the
equator; any important extratropical eddy effects will need to be
parameterized. At a much higher resolution, such as a 1/8! Merca-
tor grid, the deformation radius is resolved in the deep ocean in the
tropics and mid-latitudes, but even in this case eddies are not re-
solved on the continental shelves or in weakly stratified polar lat-
itudes. An unstructured and adaptive grid ocean model could help
to address this issue, but such models are not yet in widespread
use for global ocean climate modeling, and even then computa-
tional speed may dictate the use of models that do not resolve
mesoscale eddies everywhere.

In this paper, a series of numerical simulations of a variant of
the Phillips (1954) model of baroclinic instability are used to
examine the effects of resolution on a numerical model’s ability
to exhibit the net overturning circulation driven by mesoscale ed-
dies. The effects of a commonly used parameterization of eddy ef-
fect, both on the models’ explicitly resolved eddies and on the net
overturning, are examined. Based on these results, a simple pre-
scription is offered for the typical situation in global ocean mod-
els, where eddies are resolved in only part of the domain and in
that portion it is desired that the model be allowed to explicitly
simulate their effects, but in the remainder of the domain that
eddies be entirely parameterized. Specifically, the eddy diffusivi-
ties should be multiplied by a ‘‘resolution function’’, ranging from
0 to 1, of the ratio of the baroclinic deformation radius to the
model’s effective grid spacing, eD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þ Dy2ð Þ=2

p
. The resolu-

tion function that works best for the cases presented here rapidly
makes a transition from 1 when this ratio is greater than a value
of about 2 (the exact value is not very important and can be cho-
sen to be higher) to 0 for larger values. In the idealized case pre-
sented here, this prescription is found to give a reasonable
representation of the net eddy-driven overturning over a wide
range of resolutions.

2. The test configuration and model

Phillips (1954) analyzed the baroclinic instability that arises in
a simple two-layered quasigeostrophic model of a geostrophically
sheared flow in a reentrant channel. This problem has the advan-
tage that many of the properties of the eddies, including necessary
conditions for the growth of instabilities, the growth rate, energet-
ics and vertical structure of the exponentially growing linear
modes can be calculated analytically, as has been documented in
many textbooks on geophysical fluid dynamics (e.g. Pedlosky,
1987; Vallis, 2006).

This study examines instabilities of a stacked shallow water
variant of the Phillips problem, which is described by the momen-
tum and continuity equations:
@un

@t
þ f þ k̂ %r& un

" #
& un ¼ 'r Mn þ

1
2

unk k2
$ %

'r % T' dn2cD u2k ku2; ð1Þ

@hn

@t
þr % hnunð Þ ¼ 3' 2nð Þ c g3=2
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" #
'r % Khrg3=2

" #h i
:

ð2Þ

Here un is the horizontal velocity in layer n, where n = 1 for the
top layer and n = 2 for the bottom layer. hn ¼ gn'1=2 ' gnþ1=2 is the
thickness of layer n, which is bounded above and below by inter-
faces at heights gn'1=2 and gnþ1=2. These equations are solved in a
2000 m deep channel that is 1200 km long and reentrant in the
x-direction, and 1600 km wide in the y-direction with vertical
walls at the northern and southern boundaries. The Coriolis param-
eter, f, varies linearly in the y-direction between 6.49 & 10'5 s'1

and 9.69 & 10'5 s'1, following the common b-plane approxima-
tion. The horizontal stress tensor, T, is parameterized with a shear
and resolution dependent Smagorinsky biharmonic viscosity (Grif-
fies and Hallberg, 2000). The Montgomery potentials,
Mn ¼ p=q0 þ gz, in the two layers are given by a vertical integration
of the hydrostatic equation, so that

Fig. 1. The horizontal resolution needed to resolve the first baroclinic deformation radius with two grid points, based on a 1/8! model on a Mercator grid (Adcroft et al., 2010)
on Jan. 1 after one year of spinup from climatology. (In the deep ocean the seasonal cycle of the deformation radius is weak, but it can be strong on continental shelves.) This
model uses a bipolar Arctic cap north of 65!N. The solid line shows the contour where the deformation radius is resolved with two grid points at 1! and 1/8! resolutions.

R. Hallberg / Ocean Modelling 72 (2013) 92–103 93

Figure 3.9: The oceanic resolution needed to resolve the Rossby Radius of
deformation in an ocean model [from Hallberg et al., 2013].

Figure 3.10: The same ocean model at different horizontal resolutions, in-
creasing from right to left.
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Let’s now go a little ahead of ourselves. Consider that the Corio-
lis parameter is not constant and is actually a function of latitude
f (y). The nondivergent condition ∇ · ( f u) = 0 is satisfied by the
geostrophically balanced flow. Cross-differentiating Eq.3.60 gives

∂ f
∂y

vg + f∇z · ug = 0 (3.74)

Using mass continuity leads to

βvg = f
∂w
∂z

, (3.75)

where β ≡ ∂ f
∂y . This is a geostrophic vorticity balance, also called

Sverdrup balance. In a Sverdrup balance, the vertical velocity re-
sults from an external agent, most notably wind stress. It states that
the vertical shear in the vertical velocity balances a meridional cur-
rent, with the Coriolis parameter f and the planetary vorticity gra-
dient β determining the sense and strength of the meridional flow.
A vertical velocity shear arises when there is a nonzero curl in the
wind stress acting on the ocean surface. Vorticity is then transferred
to the ocean via frictional effects causing Ekman pumping or suction.
These effects alter the vertical structure of the vertical velocity and,
through Sverdrup balance, induce a meridional flow.
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3.7 The shallow-water equations

To describe large-scale oceanic, and atmospheric, motions, where the hor-
izontal scale is much larger than the vertical scale, we can use a set of
simplified equations that retain the necessary ingredients of the fluid mo-
tion but use some useful approximations. We will thus consider a fluid
in hydrostatic balance of constant density and, for simplicity, we will also
consider a flat bottom. The necessary condition of the shallow-water equa-
tions is that the horizontal length scale must be much larger than the ver-
tical scale over which the fluid develops so that L >> H.

If the fluid is in hydrostatic balance

∂p
∂z

= −ρg. (3.76)

Then the total pressure will be

p(x, y, z, t) = −ρgz + p′. (3.77)

Pressure must vanish at the surface, so that p = 0 at z = η

p = p0 + p′ = 0 (3.78)

and at z = η we have
p′ = ρgη (3.79)

Our total pressure will then be

p(x, y, z, t) = ρg(η(x, y)− z) (3.80)

This means that the horizontal gradient of pressure, and the flow, is inde-
pendent of depth

∇p = ρg∇η (3.81)

and the horizontal momentum equations reduce to

D u
D t

= −1
ρ
∇p = −g∇η (3.82)

We can now easily add rotation to our shallow-water momentum equa-
tions

D u
D t

+ f × u = −1
ρ
∇p = −g∇η (3.83)

The continuity equation is obtained by the mass balance within an in-
finitesimal column of fluid. The mass flux passing through a section of the
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Figure 3.11: Schematic of a flat-bottomed shallow-water system and mass
balance within a column of fluid.

column is Fm = ρu(H + η)δy and the difference between the fluxes into
and out of the section is given by

δxδy
∂

∂x
[ρu(H + η)] (3.84)

Considering the total volume, the net rate of change is

∂h
∂t

+
∂

∂x
[u(H + η)] +

∂

∂y
[v(H + η)] = 0 (3.85)

which is the new continuity equation for the shallow-water system

∂h
∂t

+
∂

∂x
(uh) +

∂

∂y
(vh) = 0 (3.86)

∂h
∂t

+∇ · (uh) = 0 (3.87)

and if the perturbation is small and H is constant, mass continuity reduces
to the linear equation

∂η

∂t
+ H∇ · u = 0 (3.88)

If there is flux by advection this is balanced by a net increase in mass and
an increase in height, giving rise to a vertical velocity, so that the mass
convergence is balanced by the increase in height allowing for a dynami-
cal surface elevation. This will be the basis for the propagation of waves
within the rotating shallow-water system.
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Exercices

1. Use φ = p/ρ0 and the definition of buoyancy b = −gρ/ρ0 to rewrite
the hydrostatic balance and thermal wind equations.

2. Where is thermal wind velocity directed in the southern hemisphere,
considering a poleward increasing (decreasing) density (tempera-
ture)? (see Fig. 3.12)

3. How is thermal wind shear changed as we approach the poles?

Figure 3.12: Zonal-mean potential density in the latitudes of the Drake
Passage.
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Chapter 4
Waves in the ocean

In this chapter we describe the general solution and dynamics of shallow-
water waves and try to put them into a wider context, emphasizing their
role in the ocean circulation and the coupled ocean-atmosphere system.

We will look for wave solutions of the shallow-water equations on the
f-plane and β-plane. A few solutions will appear, some have already been
discussed in different contexts, and some are new.

4.1 Poincaré Waves

We start by linearizing our shallow-water equations for a fluid h = H + η
over a state at rest

u = u′ (4.1)
h = H + η (4.2)

so that our equations, after eliminating higher order terms, reduce to

∂u
∂t
− f0v = −g

∂η

∂x
(4.3)

∂v
∂t

+ f0u = −g
∂η

∂y
(4.4)

∂η

∂t
+ H∇ · u = 0 (4.5)

A dispersion relation can now be obtained by looking for wave solutions
of the type

(u, v, η) = (u0, v0, η0)ei(kx+ly−ωt) (4.6)
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into our linearized equations:

−u0iω− f0v0 = −gη0ik (4.7)
−v0iω + f0u0 = −gη0il (4.8)

−η0iω + H(iku0 + v0il) = 0 (4.9)

Non-trivial solutions of the system exist only if the determinant is equal
to zero, so that ∣∣∣∣∣∣

−iω − f0 gik
f0 −iω gil

ikH ilH iω

∣∣∣∣∣∣ = 0 (4.10)

and this is true if
ω[ω2 − f 2

0 − gH(k2 + l2)] = 0 (4.11)

Now, there are a few interesting possible solutions for the frequency ω.
The first case is ω = 0. This solution describes a time-independent

flow and the equations describe a geostrophically balanced flow.
The second possible solution is if

ω2 = f 2
0 + c2(k2 + l2) (4.12)

where c = (gH)1/2 is the gravity wave phase speed. The dispersion re-
lation describes wave solutions of superinertial flow (ω > f0) which are
called Poincaré waves. From this solution we can highlight three possible
limiting cases (see Fig. 4.1).

First, the limit of no rotation, when f0 = 0. The solution reduces to
ω2 = c2K2 and the frequency solutions are

ω = ±Kc (4.13)

where K = (k2 + l2), which describe a classical gravity wave.
Second, the short wave limit, when K2 � f 2

0 /(gH), which gives

ω2 = c2K2 (4.14)

again, the dispersion relation is that of the non-rotating case with phase
speed c. This is because

2π2

λ2 �
f 2

gH
2π

λ
� f

c
λ� (gH)1/2

f
2π (4.15)
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so that Ld � λ, where Ld is the Rossby radius Ld = (gH)1/2/ f . Basically,
this solution looks like a gravity wave in a rotating case.

Third, the long wave limit, when K2 � f 2
0 /(gH). In this case we have

ω2 = f 2
0 (4.16)

and therefore the Rossby radius is much smaller than the wave length,
Ld � λ. In this limiting case, there is no space dependency, k = l = 0, and
the surface elevation anomaly is also zero η = 0. The solution is

∂u
∂t
− f v = 0 (4.17)

∂v
∂t

+ f u = 0 (4.18)

and these are called inertial oscillations, circulating at the planetary fre-
quency ω = f .

Figure 4.1: Dispersion relation for Poincarè and Kelvin waves. The frequency is
scaled by f and the wavenumber by Ld. The black dot marks the inertial oscilla-
tions regime and the ω = 0 is the geostrophic case.
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4.2 Kelvin Waves

Kelvin waves are a particular solution of the shallow water equations de-
scribing a gravity wave that exists in a rotating frame and with the help of
lateral boundaries. We could show Kelvin waves propagating in a chan-
nel, with two parallel boundaries, but for a start we will consider the case
of a single lateral boundary. The first assumption is that, if u = 0 at the
boundary, we could simply consider the zonal component of the velocity
zero everywhere. The meridional component is not zero at the boundary,
because the flow is frictionless. The linearized shallow water equations
are

− f0v = −g
∂η

∂x
(4.19)

∂v
∂t

= −g
∂η

∂y
(4.20)

∂η

∂t
+ H

∂v
∂y

= 0 (4.21)

Continuity becomes
∂η

∂t∂y
= −H

∂2v
∂y2 (4.22)

and using the momentum equation

∂2v
∂t2 = gH

∂2v
∂y2 (4.23)

which is the standard wave equation with phase speed c = (gH)1/2. The
solution to this is

v = V1 cos k(y− ct) + V2 cos k(y + ct) (4.24)

and the wave propagates along the meridional boundary. Substituting this
solution into the momentum equation we obtain a solution for η

η = V1
c
g

cos k(y− ct)−V2
c
g

cos k(y + ct) (4.25)

which describes a propagating wave in terms of surface elevation. The
solution has been found for both v and η with no Coriolis term: this has
the characteristics of a non-rotating shallow water wave. The velocity is
in geostrophic balance with the pressure field, although it is a wave and
ω ∼ f .
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Figure 4.2: For a system bounded to the west (x positive) the wave propagates in
the negative y direction, i.e. to the south. If x is negative this reverses so on the
eastern side of the basin the Kelvin wave propagates northwards. In the northern
hemisphere a Kelvin wave will keep the coast to its right as it pushed against it by
the Coriolis force.

The solutions in the x-direction are

V1 = e f0/cx (4.26)
V2 = e− f0/cx (4.27)

and remember that f0/c = L−1
d . The first solution grows exponentially

for positive x away from the meridional boundary, which is not physically
possible. We are then left with the following set of solutions

v = e−x/Ld cos k(y + ct) (4.28)
u = 0 (4.29)

η = −e−x/Ld
c
g

cos k(y + ct) (4.30)

= − (H/g)1/2 e−x/Ld cos k(y + ct) (4.31)

These are Kelvin waves. They are trapped by the meridional boundary
and decay exponentially away from it. The trapping spatial scale is given
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by the Rossby radius, and for f0 positive the boundary is at the right of
the wave propagation. Kelvin waves are balancing f against the wall,
which could be a topographic boundary or a waveguide such as the equa-
tor (Fig. 4.2).

Barotropic Kelvin waves are also tidal waves, propagating around an
amphidromic point .

Page 54



4.3 Planetary, or Rossby, waves

The time-dependent ocean circulation has an important impact on our cli-
mate due to the ocean large heat capacity. Any abrupt change, the intrinsic
variability and possible variations of the general circulation caused by the
atmospheric influence is fundamental in climate studies. Moreover, the
oceans are no longer considered passive in the atmosphere-ocean system,
but contribute to the production of the climate low-frequency variability
at interannual to decadal time scales (Talley, 1999; Dewar, 2001; Pierce et al.,
2001).

The oceans are forced at the surface by the wind frictional stress and
Rossby waves appear to play a fundamental role in redistributing and dis-
persing large-scale time-varying energy in the ocean. The propagation
of Rossby waves towards the ocean interior under the influence of wind
stress results in establishing a Sverdrup balance in the basin, accumulating
energy in the western boundaries and intensifying currents there (Ander-
son and Gill, 1975, 1979).

Due to the ubiquitous presence of Rossby waves in the world oceans
they influence ocean gyres and air-sea fluxes at all latitudes, affecting in
turn the atmospheric heat transport and circulation. They are believed
to provide teleconnections between the equatorial and middle latitudes
regions (Galanti and Tziperman, 2003) as well as transhemispheric and in-
terbasin communications (Cessi and Otheguy, 2003). Other major effects are
the maintenance and intensification of western boundary currents, trans-
port of a large amount of heat and, because of their time-scale, they play a
key role in the climate system.

Rossby waves are very long waves so that the f -plane is not a good
approximation anymore and we will build our solutions on the β-plane.
The frequency is going to be subinertial, ω � f , and so they are close to
geostrophy.

Our set of equations is

∂u
∂t
− ( f0 + βy) v = −g

∂η

∂x
(4.32)

∂v
∂t

+ ( f0 + βy) u = −g
∂η

∂y
(4.33)

∂η

∂t
+ H

(
∂u
∂x

+
∂v
∂y

)
= 0 (4.34)

Given that ω � f , ∂
∂t � 1 and βL/ f0 � 1 we can approximate the mo-

Page 55



mentum equations to a geostrophic flow

− f0v = −g
∂η

∂x
(4.35)

f0u = −g
∂η

∂y
(4.36)

and adding these geostrophic solutions to the shallow water equations

− f0v = −g
∂η

∂x
+ βy

g
f0

∂η

∂x
+

g
f0

∂2η

∂y∂t
(4.37)

f0u = −g
∂η

∂y
+ βy

g
f0

∂η

∂y
− g

f0

∂2η

∂x∂t
(4.38)

The first part of the momentum equations is that of a geostrophic flow
and the remaining is the small contribution from variations induced by
the ageostrophic component. The last terms will be responsible for the
propagation of Rossby waves.

Using continuity and (4.37)-(4.38) we arrive to

∂η

∂t
− L2

d∂t∇2η − βL2
d

∂η

∂x
= 0 (4.39)

which is a leading order approximation to the potential vorticity equation
describing a quasi-geostrophic flow

∂t

(
∇2η − L−2

d η
)
+ β

∂η

∂x
= 0 (4.40)

Now we can look for Fourier type solutions in the form η = η0ei(kx+ly−ωt)

ω = − βk
(k2 + l2) + L−2

d

(4.41)

or alternatively

ω = −βL2
d

k
1 + L2

d(k
2 + l2)

(4.42)

Evidently, on the f -plane (β = 0) the solution reduces to a geostrophic
flow and no wave is allowed to propagate. The meridional gradient in f
is thus the restoring force for Rossby waves.

Two possible cases can be envisaged, setting l = 0.
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First, that of short waves, where L ≤ Ld and therefore kLd ≥ 1, for L a
typical scale of the wave length and k a typical scale of the wave number.
In this case the dispersion relation reduces to

ω = −βL2
d

k
L2

d(k
2)

= −β

k
= −βL (4.43)

Given that we are on the β-plane approximation, βy � f0 → βL � f0 →
ω � f0, confirming the subinterial period.

Second, waves could have very long wave length L ≥ Ld or kLd ≤ 1

ω = −βL2
dk = −β

Ldk2

k
� −β

k
= −βL (4.44)

and therefore ω � f0. The period of Rossby waves is always subinertial.

Phase and group speeds

Keeping l = 0 and using the following scaling

ω = ω̂βLd (4.45)

κ =
κ̂

Ld
(4.46)

The dispersion relation takes the form

ω̂βLd = −βL2
d

κ̂/Ld

1 + L2
d

κ̂2

L2
d

(4.47)

ω̂ = −Ld
κ̂/Ld
1 + κ̂2 = − κ̂

1 + κ̂2 (4.48)

and for |κ̂| = −1 the frequency takes the value |ω̂| = −0.5 (see Fig. 4.3).
The phase speed of Rossby waves is easily computed (with l = 0)

cp =
ω

k
=

−β

k2 + L−2
d

(4.49)

it is always negative and larger for long waves .
For long Rossby waves, the phase velocity is approximated by

cp = ω/κ = −βL2
d (4.50)

which is strictly westward even if l 6= 0.
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The phase speed is always negative but is the energy flux always di-
rected westward? this does not seem possible.

The group velocity is obtained by differentiating the dispersion rela-
tion

cg = (
∂ω

∂κ
,

∂ω

∂l
) = β(κ2 − l2 − L−2

d , 2κl)/(κ2 + l2 + L−2
d )2 (4.51)

or, by setting l = 0

cg =
βκ2 − βL−2

d

(κ2 + L−2
d )2

(4.52)

Set k = 0 and group and phase velocities are equal cp = cg = −βL2
d

(see Fig. 4.3).
If l 6= 0 the dispersion relation takes the form of the dispersion diagram

in Fig. 4.4. The group velocity, the gradient of the frequency in wavenum-
ber space, is normal to the contours and inversely proportional to the spac-
ing between contours. The hyperbola separating waves with eastward and

Figure 4.3: Rossby wave dispersion relation, phase and group speeds.
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Figure 4.4: Rossby wave dispersion diagram. Contours are of frequency in units
of β Ld. The group velocity, the gradient of the frequency in wavenumber space,
is normal to the contours and inversely proportional to the spacing between con-
tours. The hyperbola separating waves with eastward and westward group veloc-
ity is shown by the dashed line and is κ2 = l2 + L−2

d . Frequency contours reduce
to a single point when ω = 0.5βLd and κ = Ld.

westward group velocity is shown by the dashed line and is κ2 = l2 + L−2
d .

Frequency contours reduce to a single point when ω = 0.5βLd and κ = Ld.
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4.3.1 Quasi-geostrophic Rossby waves

The discovery of Planetary waves by the solution of Laplace’s equation as
the second class waves dates back to the late nineteenth century by Hough
(1897). Later C.G. Rossby pointed out the characteristic of these waves,
hence they carry his name and are also called Rossby waves.

Since then, Rossby wave theory is well known (Gill, 1982; Dickinson,
1978; Leblond and Mysak, 1981) and is usually applied to an ocean at rest
with uniform depth.

Rossby waves owe their existence to the meridional variation of the
Coriolis force (the β effect) and therefore propagate following an east-
west waveguide, as the conservation of potential vorticity is their restoring
force.

These kinds of waves, whose frequencies are considerably lower than
those of gravity waves and are subinertial (ω � f ), are also sometimes
called quasigeostrophic waves, with a dynamic evolution depending on
the departure from geostrophy.

The generation of these waves is still not completely understood but
the main forcing is wind stress and buoyancy forcing, though the latter is
thought to act in a minor way, and upwelling-downwelling on the eastern
boundary (Leblond and Mysak, 1981; Gill, 1982).

In order to obtain and describe the Rossby wave solutions, we con-
sider the linearised quasi-geostrophic (QG) potential vorticity equation
(Pedlosky, 1987):

∂tqi + J(ψi, qi) = 0, (4.53)

where J(a, b) = axby − aybx is the Jacobian and ψ the stream function.
Introducing a plane wave solution of the type ψ = Ψei(kx+ly−σt) into (4.53)
we naturally obtain the dispersion relation for Rossby waves, showing
their basic characteristics (Leblond and Mysak, 1981; Gill, 1982)

ω = − βk
(k2 + l2) + L−2

d

,

where ω is the frequency, k and l are the horizontal wavenumber, β is the
meridional variation of the Coriolis parameter and Ld the Rossby radius
(C2/ f 2). It is clear that Rossby waves have westward phase velocities (of
the order of a few cm/s) and that these are increasing toward the equator
(where equatorial wave theory holds) with a maximum speed cx = βL2

d;
the group velocities, Cg, in the case of long waves, are westward and the
waves are nondispersive (Cg = cx), while short waves propagate east-
wards but with very slow speeds.
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Another remarkable feature of the planetary wave dispersion relation
is that not all frequencies exist, with a cutoff frequency at 1

2 βLd.
Besides the horizontal problem, the vertical one is of great importance.

Using a normal mode representation (Leblond and Mysak, 1981), separating
the vertical and horizontal structure, we find an infinite set of solutions
(or normal modes). The zeroth is the barotropic one, almost vertically in-
dependent and very rapid; the other solutions, or modes, are called baro-
clinic with decreasing phase speeds and increasing oscillation in the ver-
tical. A first-mode baroclinic Rossby wave takes months to years to cross
an ocean basin, depending on the latitude.

A 3-layer model

In the case of a 3-layer ocean, the potential vorticities are given by

q1 = ∇ψ1 + βy− F11(ψ1 − ψ2)

q2 = ∇ψ2 + βy− F21(ψ2 − ψ1)− F22(ψ2 − ψ3)

q3 = ∇ψ3 + βy− F32(ψ3 − ψ2),

where Fm,n = f 2
0 /(Hmg′n) and g′i and Hi are the reduced gravities and layer

depths respectively.
For this 3-layer system, substitution of a plane wave solution leads to

a generalised eigenvalue problem of the form AΨ = ωBΨ, or explicitly: β1 0 0
0 β2 0
0 0 β3

 ψ1
ψ2
ψ3

 = ω

 −G1 1 0
G2 −G3 1
0 1 −G4

 ψ1
ψ2
ψ3

 ,

where β1 = (kβ)/F11, β2 = (kβ)/F22, β3 = (kβ)/F32 and G1 = (K2 +
F11)/F11, G2 = F21/F22, G3 = (K2 + F21 + F22)/F22, G4 = (K2 + F32)/F32,
where K2 = k2 + l2.

The solution of the system is plotted in Fig.4.5 and it describes the ba-
sic properties of Rossby wave propagation. In fact, for the 3-layer system,
the dispersion relation is found on the upper panel and both phase and
group velocities on the bottom panel of Fig.4.5. We can distinguish the
barotropic mode with increasing frequencies towards long wavelengths,
very fast phase speeds and positive (eastward) group velocities. The baro-
clinc modes have smaller frequencies, their phase velocities are always
westward but their group velocities turn from westward to eastward at
the point of maximum frequency

kLd = |1| and ω(βLd)
−1 = |0.5| (4.54)
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Figure 4.5: Upper panel: the dispersion relation for the barotropic and
first two baroclinic modes of the 3-layer QG ocean. Shown are values
of both positive and negative wavenumbers. The wavenumber is scaled
by the deformation radius Ld and the frequency by βLd; the meridional
wavenumber l is set to zero. The first baroclinic mode frequency reaches
a maximum at ωmax = βLd/2, i.e. ωmax = |0.5|. Lower panel: phase (solid
lines, cx = ω/k) and group (dashed lines, Cgx = ∂ω/∂k) velocities of the
barotropic and first two baroclinic modes, scaled by βL2

d.

where the group velocity is zero. Therefore, long baroclinic waves direct
their energy westward while short waves direct it eastward. This means
that, in the limit of long wavelengths, the phase and group speeds are
the same and the waves are nondispersive. On the other hand, for short
waves phase and group speeds differ and the waves are dispersive. The
maximum group and phase velocity (Cx = Cgx = −βL2

d) are attained for
long waves, they are to the west and can be found on the axis origin of the
dispersion relation.

Page 62



The system could be extended to an N-layer or even to a continuously
stratified ocean. In every case, the solutions obtained are one barotropic
and N-1 baroclinic modes of decreasing phase speeds. This method of
analysis is called the normal modes method, in which the ocean is decom-
posed into an infinite set of solutions (or modes): one barotropic (or exter-
nal) and the remaining baroclinic (or internal).
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4.3.2 Rossby waves in observations and models

Chelton and Schlax (1996) presented for the first time the results of these
observations identifying clear Rossby waves signals (Fig.4.6) and common
features like the increase of phase speed in the western basin, the effect
of bottom topography, eastward propagating equatorially trapped Kelvin
waves and pulses related to El Niño events.

As anticipated, the advent of satellite altimetry brought a powerful
tool to describe Rossby waves in the real ocean. The TOPEX/POSEIDON
(T/P) altimeter is able to detect long baroclinic planetary waves unam-
biguously over the entire world ocean (Fig. 4.7).

The T/P altimetry data reveal the sea surface height anomalies (SSHA)
and to analyse this data time-longitude plots, known as Hovmöller dia-
grams, are used, which clearly show Rossby waves as diagonal alignments
of crests and troughs moving westward. An example of this is given in
Fig.4.7, where SSHA data from the Indian Ocean are plotted for the lati-
tude 20oS from 1993 till May 2005; in the left panel the row data are plotted
while in the right panel the data have been filtered with a westward filter
to better show Rossby wave propagation.

By this technique, Rossby waves are detected in all basins and altime-
try has been used also in the Southern Ocean (Hughes, 1995) where two
dynamical systems were found, a supercritical and a subcritical one with
respect to Rossby waves, the first one being able to advect the waves east-

Figure 4.6: Sea surface height anomalies showing the propagation of plan-
etary waves in the Pacific Ocean. Also clear is the β-effect inducing larger
phase speeds towards the equator [from Chelton and Schlax (1996)].
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Figure 4.7: Time-longitude plot of the sea surface height anomalies (in me-
ters) in the Indian Ocean at 20oS. On the left panels, the original altimeter
data. On the right panel, the corresponding westward-filtered signature.
There is a clear evidence of crests and troughs propagating westward with
a biannual period (Courtesy of P. Cipollini).
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ward.
Rossby waves are also detected by other sensors like the Along-track

Scanning Radiometer (ATSR) in sea surface temperature (SST) and, re-
cently, SeaWiFS in ocean colour.

As an example, Hill et al. (2000) used a SST record to compute Rossby
wave phase speeds finding good agreement with Killworth et al. (1997).
They were also able to detect topographic effects such as those predicted
by Killworth and Blundell (1999).

One of the latest applications has been using ocean colour. Cipollini
et al. (2001) found for the first time Rossby waves in SeaWiFS datasets,
although they are neither very clear nor ubiquitous. A preliminary expla-
nation for this detectability was in term of the vertical displacements of the
thermocline associated with the Rossby wave and subsequently changes
in the nutrient upwelling.

Computing Rossby wave phase speeds

In order to compute the gravity wave phase speeds and Rossby radii of de-
formation we need to solve the generalized eigenvalue problem of Sturm-
Liouville form:

d2φ

dz2 +
N2(z)

C2 φ = 0 (4.55)

subject to the following boundary conditions

φ = 0 at z = 0,−H (4.56)

where H is the local mean water depth and N2 is the Brunt-Väisälä fre-
quency, computed from the potential density method as outlined in Chel-
ton et al. (1998). Solution of the system (4.55)-(4.56) leads to an infinite set
of eigenvalues C−2

m , the baroclinic gravity wave phase speeds, and corre-
sponding eigenfunctions φm.

However, Chelton et al. (1998) showed that a WKB approximation of
the gravity wave speed is generally in good agreement with the solution
given by the system (4.55)-(4.56), and this is:

Cm ≈ CWKB
m = (mπ)−1

∫ 0

−H
N(z)dz, m ≥ 1. (4.57)

Then, within the extratropical regions, the Rossby radii of deformation
are simply found by applying

Lm
d =

Cm

| f (θ)| . (4.58)
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Figure 4.8: A global contour map of the baroclinic gravity wave phase speed [from
Chelton et al., 1998] and its zonal mean.
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Figure 4.9: As in Fig.4.8 but from the GFDL-CM4.0 model under historical
conditions for years 2010-2014.
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We will be focusing on extratropical regions only (|θ| ≥ 10◦), leaving the
equatorial wave dynamics response aside.

Now, we can compute the unperturbed long Rossby wave speeds cm =
−βC2

m/ f 2.
Since model data provide potential density ρθ, we can compute the

stratification directly from the potential density method of the non-equispaced
vertical levels k:

N2(z) = −g/ρ0

[
ρθ(z)− ρθ(z + 1)/(δk(z)− δk(z + 1))

]
(4.59)

The gravity wave speed can be obtained from two different method.
First, as a good approximation, we can infer it from the WKB method as
suggested in Chelton et al. (1998):

Cm = (mπ)−1
∫ 0

−H
N(z)dz, m ≥ 1. (4.60)

After obtaining N2 and Cm, the Rossby radii of deformation are readily
computed as

Lm
d =

Cm

| f (θ)| , |θ| ≥ 5◦ (4.61)

Lm
d =

Cm

2|β(θ)| , |θ| ≤ 5◦. (4.62)

or, for the extratropical band: Lm
d = (| f |mπ)−1

∫ 0
−H N(z)dz

For the linear, long and extratropical waves, we can simply compute
the Rossby wave phase speed as

cm = −β(Lm
d )

2 (4.63)
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Figure 4.10: A global contour map of the baroclinic Rossby radius of deformation
and its zonal mean. [data from Chelton et al., 1998]
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Figure 4.11: As in Fig.4.10 but from the GFDL-CM4.0 model under historical
conditions for years 2010-2014.
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Figure 4.12: A global contour map of the baroclinic Rossby wave phase speed and
its zonal mean. [data from Chelton et al., 1998]
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Figure 4.13: As in Fig.4.12 but from the GFDL-CM4.0 model under historical
conditions for years 2010-2014.
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Kelvin and Rossby waves in the general oceanic adjustment

The importance of Rossby waves in the spinup of the ocean and in the
adjustment of the ocean interior was also recently shown by Johnson and
Marshall (2002). They proposed a theory for surface Atlantic response to
thermohaline variability; in their work they study the reaction of the ocean
to a perturbation of the rate of deep water formation at high latitudes.
These changes initiate Kelvin waves which propagate along the western
boundary, in a similar response of that demonstrated by Kawase (1987),
and then cross the basin as equatorial Kelvin waves until they reach the
eastern boundary where they propagate northwards and southwards. The
final part of the response is the radiation of Rossby waves from the east-
ern boundary, communicating the thermocline displacement to the ocean
interior which is clearly illustrated with a series of snapshots (Fig. 4.14).
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Figure 4.14: Surface layer thickness after a thermohaline overturning of 10 Sv
is switched on at time t = 0 in the northwest corner of an ocean initially at rest.
There is no wind forcing, and the surface layer is initially 500 m deep. The contour
interval is 2 m, and thicknesses less than 499 m are shaded. Note that the thickness
anomaly on the western boundary is much greater than that in the interior. [from
Johnson and Marshall, JPO2022]
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What will happen in the future?

Saenko (2006) recently showed that, within the IPCC models, there is clear
evidence of an increase of the first baroclinic Rossby radius with increas-
ing oceanic stratification in the warmer climate. The changes range from
15 to 20% depending on the model and latitude. This would imply a
greater length scale for mesoscale eddies and modified characteristics for
oceanic Rossby waves, whose speed is proportional to the squared baro-
clinic Rossby radius of deformation. Also, the adjustment time scale in the
ocean would decrease as well as in any ocean-atmosphere climate variabil-
ity process where Rossby waves set the dominant period. Equally impor-
tant, if not more in certain basins, is the change in the background baro-
clinic mean flow and its subsequent effect on the propagation of Rossby
waves. This effect was not considered in Saenko (2006).

Modifications to the background stratification and mean flows are ob-
served between pre-industrial and climate-change runs in the GFDL CM4
model (Fig.4.15 and Fig.4.16).

The effects of an increased stratification on the Rossby radius of de-
formation and gravity wave speed have been the subject of recent studies
(Saenko, 2006). However, the question of the quantification of these effects
on the Rossby wave activity, as well as the changes induced by a modified
background mean flow, is still unanswered.

We expect to show considerable alterations to the Rossby wave phase
speeds at different latitudes, leading to important changes in the ocean
adjustment time-scale and coupled ocean-atmosphere interactions where
Rossby waves set the clock (Fig.4.19 and Fig.4.20).
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Figure 4.15: The baroclinic gravity wave phase speed computed from the GFDL-
CM4.0 model under historical conditions for years 2010-2014.
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Figure 4.16: The baroclinic gravity wave phase speed computed from the GFDL-
CM4.0 model for the future scenario SSP585.
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Figure 4.17: The Rossby radius computed from the GFDL-CM4.0 model under
historical conditions for years 2010-2014.
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Figure 4.18: The Rossby radius computed from the GFDL-CM4.0 model for the
future scenario SSP585.
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Figure 4.19: The baroclinic Rossby wave phase speed computed from the GFDL-
CM4.0 model under historical conditions for years 2010-2014.
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Figure 4.20: The baroclinic Rossby wave phase speed computed from the GFDL-
CM4.0 model for the future scenario SSP585.
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