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My own journey around the oceans 2
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Why care about the ocean?
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Cartoons of the ocean circulation
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The ocean in motion
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When and why to use ocean models?

» Advantages

» NO need to go out and collect data; all data is available

» Self-consistent (as long as no bugs)

» Often best way to test hypotheses (“what would happen if New Zealand disappears?”)
» Disadvantages

» Not the truth!

» Need large teams to build ocean models, and even larger computers to run them
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A tradeoff between spatial and temporal scales

* Thereis Nno one ocean model that can
simulate anything from beach waves to
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Basic ingredients of an ocean model

..)

Approximations (Boussinesq, hydrostatic, turbulence,

..)

Discretisation (finite differences, finite elements,

Programming (Fortran, parallelisation, vectorisation, ...)

Settlngs (domaln resolutlon
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Ocean models follow physical principles

» Based on

. Dp .

. Conservation of mass: e —pV - u
. . U —

. Conservation of momentum (Navier-Stokes): P =~ 20QXu—Vp—-—pVd +F
. DS

. Conservation of salt: Py = 8
. D6

. Conservation of heat; v g,

» Equation of state: p = F(S, 6, p)
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Some important approximations 10

* Thin-shell/shallow aspect ratio approximation
 Hydrostatic approximation

» NO accelerations or friction in the vertical, balance between gravity and pressure gradient
» Boussinesg approximation

» Density is (nearly) constant in the ocean. Can replace p(x) with p, almost everywhere
» Eliminates sound waves

¢ Mass conservation becomes volume conservation
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This yields the ‘primitive equations’

Du uv 1 dp _
' po(Dt a tan(p—fv) B acosq ol T
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From the equations to the model

..)

Discretisation (finite differences, finite elements,

Programming (Fortran, parallelisation, vectorisation,
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Boundary conditions

Sea ice — Ocean: Atmosphere — Ocean:
 Heat and freshwater fluxes * Freshwater (evaporation, precipitation)
 Exchange of momentum * Heat fluxes
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* Continuity of pressure

» Exchange of momentum (wind)
Z N(iJ.t)

Land — Ocean:
* river runoff (fw)

—H(1,))

i, ]
Solid earth — Ocean:
* (Typically) no heat/salt fluxes

* No velocity normal to bottom/coast
» Different approaches for tangential velocity
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From wind speed to wind stress 14

* The wind produces a stress on the surface of the ocean

-

« Parameterised as t,, = p,Cp, |u, | u, with C, = 0.0015 drag coefficient and u, wind at 10m.

a

» Note that, even though this parameterisation is very widely used, it's inaccurate:

» Assumes a resting ocean (So no motion)

* This leads to 20% over-prediction of wind work Wind stress difference (mean 2020)

. Betterto use 7, = p,Cp, (i, —i,) %,f P -. = \,‘
» But problem for forced (i.e. ocean-only) models S e »

U, —Uu,

+ See Wikipedia article on Relative Wind Stress h. ":;\;-;.: SO ’
» 2022 CLPH students P ) '
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Choosing a horizontal resolution
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The pole problem for ocean grids

* (Global) ocean modelling has a serious problem at the poles

» Simplest possible grid is lon/lat, at fixed #degrees per gridcell (with 1/100¢ state-of-the-art)
» However, near poles Ax (in m) goes to zero for a given gridspacing in degree

» And this means that At needs to go to zero too (because of CFL criterium)

» One solution: put poles over land (easy in South, requires tripolar grid in North)

» Other option is to use distorted/triangular meshes (but code becomes more complicated)
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Unstructured horizontal grids

» Some (regional) models have unstructured triangular mesnes, with variable resolution

» Avoids pole problem and is great to focus on specific region of interest
» But difficult to maintain conservation of mass, momentum, energy etc
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Choices for vertical grids

* In principle, three different choices for vertical grids:
» z: Each layer has fixed depth (z* it layers can be stretched a bit for sea level changes)

* 0. £ach layer nas
* p. Each layer nas

fixec

fixec

fraction of local depth
density (does not work well in mixed layer)

» Combination of the three also possible (hybrid grid)

Z Vertical Coordinate System

Sea level
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Bathymetry is very important 19

» Each grid cell can have only one value for T, S, u, v, (w) etc.
» S0 by gridding, resolution is lost
» At too low resolution, ocean models can't 'see’ islands
» S0 they don't reproduce island processes like upwelling
» S0 they don't reproduce island processes like upwelling

SST in climate model SST in satellite data
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A summary of the most widely used global models 20

* Thereis no one ocean model that can simulate all from beach waves to climate change
» Each problem requires its own ocean model

NEMO Furopean consortium Z (and z%) Global simulations
HYCOM US Navy hybrid (z, sigma and rho) Global simulations
MOM NOAA all (generaliseq) Global simulations

POP NCAR 7 Global simulations

ROMS/CROCO| Global consortium sigma Coastal/regional

ICON (German consortium Z Unstructured meshes
FVCOM Global consortium sigma Unstructured meshes
MITgcm MIT Z (and z7) Lab to global (hon-hydrostatic)
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The Big Ocean Data challenge
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A community effort towards processing
big data in the Geosciences.

» How do we make sure our tools and infrastructure are ready for the petascale age?
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Ocean reanalysis: to assimilate or not? 22

» The ocean models mentioned on previous slide need forcing (winds, surface fluxes), these
typically come from numerical weather/climate models
» |f that is the only forcing, there is no guarantee that the ocean circulation will be ‘realistic’
» While mean flow may be representative, eddies do not need to be at certain place/time
» Hence, for applications where realism is important, data assimilation can help
» Models ‘'steered’ towards observations
» Many ways to do this (4D-var, EnKF, etc)
» Product is‘ocean (re)analysis
» Like weather forecasting
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The MyOcean Pro viewer to explore ocean model data
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An oceanographic Turing test?

» Models are swiftly becoming more realistic

Thomas

observations and Mmoo
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aine suggested the “oceanographic Turing test”:
» (Can an oceanographe

- distinguish between

el?
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