
Climate Dynamics
PartII: Atmospheric Dynamics

Fred Kucharski

This course consists of 15 lectures.

- At the end of each lesson, exercises will be given as homework and discussed
in the beginning of the following lesson.

- Recommended textbooks:
S. R. de Groot and P. Mazur: Non-Equilibrium Thermodynamics. Dover
Publications, New York,
John A. Dutton: The Ceaseless Wind. Dover Publications, INC., New York
James R. Holton: Dynamic Meteorology, Third edition, Academic Press.
Joseph Pedlosky: Geophysical Fluid Dynamics, Springer-Verlag.
Others are suggested in the individual lectures. Many others are good as well,
so choose!

- Lecture notes will be available at
http://users.ictp.it/∼kucharsk/lecture notes climate units section1 3.pdf, etc.

- If you find mistakes, corrections are highly appreciated!

Topics in the course

- Thermodynamic state and state variables; thermodynamics potentials; sec-
ond law; thermodynamics equilibrium; multicomponent systems; hydrostatic
equation; Application to dry air; Moist atmospheric thermodynamics [3 h]

- Vorticity equation for synoptic-scale motion; potential vorticity conservation
(barotropic and general) [1.5 h]
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- Rossby waves; free Rossby waves; forced Rossby waves; turning latitude [1.5
h]

- Equatorial waves; Rossby-gravity waves; Kelvin waves [1.5 h]

- ENSO atmosphere and ocean feedback mechanisms; Gill model; Reduced
Gravity Model [1.5h]

- Rainfall responses to heating; Ekman pumping effect; upper-level divergence
[1.5h]

- The General Circulation; Hadley Cell; Ferrell Cell; Tropical zonal and merid-
ional circulations; Walker circulation; Sverdrup balance [1.5h]

- Modes of variability in the climate system: ENSO, PDO, NAO, AMO [1.5]
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1 Thermodynamic state

The presentation of thermodynamics in this lecture is based in parts on a lecture
course Atmospheric Thermodynamics which is part of the Atmospheric Physics lec-
ture course developed at the ICTP. I have modified the presentation of the basics
according to my own taste a little bit, by trying to separate the general basics of
(thermo)dynamics and the specifics of a particular system. In particular there will
be no dq, the heat, in this lecture course. Thermodynamics has a microscopic foun-
dation, but a when talking about a thermodynamic state, we are referring to its
macroscopic state. A thermodynamic state is characterized by state variables. Ex-
amples of state variables (or simply variables) of a moving system are its velocity,
temperature, density and pressure. Thermodynamics is usually referring to systems
that are at rest (macroscopically, of course). But the interaction between dynamics
and thermodynamics is important, and this interaction is one of the reasons why
thermodynamics is of major interest in, for example, atmospheric dynamics. Exam-
ples of systems we are interested in are gases (atmosphere), fluids (oceans, water in
atmosphere), and solid bodies (parts of the Earth). We will sometimes use the ther-
modynamics of systems of larger extends, but mostly adopt the local description.
For example, one may define the density of a system (for example a gas) by its mass
M divided by its volume V , but it is sometime convenient to consider infinitesimal
small systems in a continuum. In this case we have the local density

ρ := lim
∆V→0

∆M

∆V
, (1)

and ρ = ρ(x, y, z, t). The specific volume v is just 1/ρ. The same will be the case
for all other state variables, such as pressure p, temperature T , etc.

1.1 Extensive and intensive variables

There are extensive and intensive state variables. Assume a system that we decom-
pose into pieces. Extensive variables are then variables that if we add their parts,
the result is the variable of the whole system. For example, volume and mass are
extensive variables. Variables that do not add up after a decomposition are called
intensive variables. If we divide an extensive variable by its mass, the results is the
corresponding specific variable, i.e. the specific volume is v = V/M . Usually we will
denote the specific variables with lower case letters and the corresponding variable
with capital letters. Specific variables are intensive, they do not add up anymore
(or only if properly weighted). We can divide an extensive quantity also by the
amount of molecules present. Then is is called molar quantity. In the following we
will mainly consider local, specific quantities. Also note that in particular cases also
intensive quantities may be added up (in particular the specific intensive quantities,
where we may sum up using a weighting).
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1.2 Field quantities

For our application, the earth system, including the solid part, ocean and the at-
mosphere (which is mainly dealt with in this course), it is usefull to consider the
local specific quantities to describe the system that depend on space and time, e.g.
ρ = ρ(r, t), v = v(r, t), etc., where r = x, y, z is the space position vector and t is
time. Such quantities are called field quantities. To appy thermodynamics locally
we have to assume that the infinitesimal system we are considering is small (so small
that it can be considered to be in local thermodynamics equilibrium), but not too
small. It has to be large enough to be able to apply the macroscopic thermodynamic
laws to the system. Typically a few mm are certainly large enough in the not too
thin atmosphere. There are two basic ways to decribe changes of field quantities
(this has been already extensively discussed in your GFD Course), one is the la-
grangian form, in which you follow the infinitesimal element with its macroscopic
motion, e.g. dρ/dt, where d/dt is the total time derivative, and the eulerian form
∂ρ/∂t, that is the local time derivative. Lagrangian and eulerian derivatives for any
field ψ are related through the 3 dimensional velocity vector v

dψ

dt
=
∂ψ

∂t
+ v · ∇ψ , (2)

where ∇ is the vector containing the 3 space derivatives ∂
∂x ,

∂
∂y ,

∂
∂z and the scalar

product has to be considered. The thermodynamic properties developed in the next
sections are mostly valid for the infinitesimal mass element that we consider, but
sometimes we also apply the field perspective.

1.3 Energy, first law and Gibbs equation

We will only provide a heuristic description of Themodynamics in this course. The
laws introduced may be interpreted as axioms, that is we cannot prove them within
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the macroscopic framework, but they are postulates that have been proven to be
true in every system that fulfills the properties outlined. The (specific) energy, e,
can be attributed as variable to virtually all physical systems. It is also a function
of a set of variables, called natural variables, lets say xi, i = 1,m that characterizes
a physical system under consideration

e = e(xi), i = 1,m (3)

The first law of thermodynamics is just a special case of the general conservation
law of energy, and is therefore nothing really special to thermodynamics.

The Gibbs equation is an equation that can be derived by differentiating e with
respect to its variables

de =
m∑

i=1

∂e

∂xi
dxi . (4)

Note that the variations here are arbitrary, and can be in particular the total time
derivative or local time derivatives. The same as above is also valid for finit volume
system that are in thermodynamic equilibrium (see below). The more difficult part
is to identify the natural variables of energy, and they are postulated here.

The natural variables of energy for a n component (multicomponent) system,
composed, for example of gases or different phases of gases (e.g. the atmosphere), are
the n + 4 quantities specific momentum v, specific volume, v, and specific entropy,
s, and the n mass fractions of each component mi = ρi/ρ (note that

∑n
i=1 ρi = ρ

and therefore
∑n
i=1mi = 1). This also means that a one-component system has 5

natural variables. It is usually assumed that in this case the gases and phases are
well mixed in the infinitesmal mass or volume element, so that just one temperature
and (total) pressure can be attributed.

In the presence of a gravity field, we have to include an explicit dependence of
energy on the location through the potential energy, φ(r) The partial derivatives of
energy with respect to its natural variables are the (3-dimensional) velocity vector, v,
negative pressure, −p and temperature T , and the chemical potentials µi. Therefore
the Gibbs equation 4 becomes

de = v · dv − pdv + Tds+
n∑

i=1

µidmi + dφ . (5)

This equation, in particular the partial derivatives of energy with respect to entropy,
may be interpreted as the defining equation for the absolute temperature. Note that
all the above can be also formulated in terms of the non-specific quantities for a sys-
tem in thermodynamic equilibrium (see below). In general, also in a nonequilibrium
situation, we may define a global quantity (e.g. for the whole atmosphere) by an
integral, e.g. E =

∫
ρe dxdydz. It is often convenient to consider another quantity,

the internal energy, u, that is defined by u := e − 1/2v2 − φ. The Gibbs equation
for the internal energy is then

du = −pdv + Tds+
n∑

i=1

µidmi . (6)
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The internal energy is just dependent on the n +1 quantities v, s,mi, as can be
seen from Eq. 6. Note that this is also true for the field quantities introduced in
the previous section, the dependence of u on space and time is then through the
quantities v, s,mi. Traditionally, the term Tds has been expressed as exchanged
heat q or dq. Particularly the latter one is misleading as it suggests the ’heat’ to
be a function of state. However, we may occasionally refer to Tds as the process
of exchange of heat q. Other thermodynamics potentials may be derived from the
internal energy by simple transformations (Legendre Transformation). The most
common ones are the Enthalpy (h := u+pv), the Gibbs free energy (g := u+pv−Ts),
Helmholtz free energy (f := u− Ts). With each of these definitions comes along a
change of the natural variables (exercise!).

Note that the thermodynamic potentials are homogenic function of its extensive
(or specific intensive) variables, which means, for example, for the Gibbs free energy

g(T, p,mi) =
n∑

i=1

miµi , (7)

with

dg(T, p,mi) = vdp− sdT +
n∑

i=1

µidmi . (8)

Using the transformation 7 and 8 it follows the Gibbs-Duhem relation (exercise!)

n∑

i=1

midµi = vdp− sdT , (9)

which states that the intensive variables are not independent anymore.
A useful volume-specific (instead of mass specific) formulation of Eq. 5 is (exer-

cise!)

d(ρe) = v · d(ρv) + Td(ρs) +
n∑

i=1

µ∗i dρi + ρdφ , (10)

where

µ∗i := µi −
1

2
v · v + φ , (11)

is some kind of modified gibbs free energy (including the mechanical energies), with
(exercise!)

n∑

i=1

midµ
∗
i = −v · dv − sdT + vdp+ dφ . (12)

Note that for a one-component system Eq. 10 becomes

d(ρe) = v · d(ρv) + Td(ρs) + µ∗dρ+ ρdφ , (13)

where

µ∗ := g − 1

2
v · v + φ = e− v · v − Ts+ pv , (14)

with the Gibbs free energy g = u− Ts+ pv and Eq. 12 degenerates to

dµ∗ = −v · dv − sdT + vdp+ dφ . (15)
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1.4 Second law of thermodynamics; thermodynamics equilibrium;
hydrostatic equation

The second law of thermodynamics is related to the entropy, S and states

dS ≥ 0 (16)

for a closed system (no exchanges with outside), and the total entropy can be cal-
culated from the local specific entropy by S =

∫
ρs dxdydz. Processes for which

the entropy increases are called irreversible, reversible processes are the limit case
in which the entropy remains constant. The thermodynamic equilibrium state (of
a closed system) is defined by the state in which the entropy reaches its maximum
value. It is useful to calculate the equilibrium state of the atmosphere (assuming it
as a well mixed dry gas, so that is can be considered as one-component system that
only depends on ρ =

∑n
i=1 ρi); see next section. For this purpose we have to maxi-

mize the integrated specific entropy. We cannot require momentum conservation for
the atmosphere (momentum may be lost through friction to the earth in order to
get into the equilibrium state). However, there are contraints to consider regarding
the conservation of global energy and mass. The standard technique to solve this
problem is to introduce lagrange-multiplicators and to maximize:

L = S + λe

(∫

v
ρedV − E

)
+ λρ

(∫

v
ρdV −M

)
(17)

Applying a variation to this Lagrange Function and using a re-formulation of Eq.
13

δ(ρs) = − 1

T
v · δ(ρv) +

1

T
δ(ρe)− µ∗

T
δρ . (18)

Note, that the variation δ applied here only to the variables and is local at this stage,
so that the variation of the only space-dependent geopotential vanishes. With this
we get

δL =

∫

v

[(
λe +

1

T

)
δ(ρe)− v

T
· δ(ρv) +

(
λρ −

µ∗

T

)
δρ

]
dV (19)

In order for the entropy to be maximized under the constraints of global energy
and mass conservation, the variation of the Lagrangefunction 19 must vanish for
arbitrary and independent variations. From this follows

1

T0
:= −λe ;

v0

T0
= 0 ,

µ∗0
T0

:= λρ , (20)

where the 0 indicates the equilibrium state. The lambdas are constant in space and
time. Using Eq. 15, and using the gradient operator ∇ it follows for the equilibrium
state

∇µ∗0 = −∇(
1

2
v0

2)− s0∇T0 + v0∇p0 +∇φ . (21)

Therefore, we have because of v0 = 0, T0 = const. and µ∗0 = const.

∇p0 = −ρ0∇φ . (22)
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It follows that the equilibrium state is isothermal, motionless and in hydrostatic
equilibrium. Since in a coordiante system with z as the local vertical, the potential
energy can be usually well expressed as φ = gz, we have the hydrostatic equation in
the known form

∂p0

∂z
= −ρ0g , (23)

where g = 9.81 m/s2 is the acceleration due to gravity. It is interesting to note
that all contact variables, temperature, velocities, assume constant values in the
thermodynamic equilibrium, apart from the pressure, which is in the presence of a
gravity field in hydrostatic equilibrium. Often, in thermodynamics it is assumed that
also the pressure is constant in equilibrium. This approximation is valid if vertical
displacements are small (i.e. just a few meters), so that the pressure variation
according to Eq. 23 can be considered as very small.

The typical variation of pressure with height due to the usually well fulfilled
hydrostatic condition is shown in Fig. 1,

Figure 1: Typical change of pressure with height
according to the hydrostatic equation. From
http://www.physicalgeography.net/fundamentals/images/pressure altitude.jpg

Questions: What are the processes that would bring an imagiary closed atmo-
spheric system into thermodynamic equilibrium? Is the atmosphere typically in
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thermodynamic equilibrium as a whole? The answer to this question is certainly
NO!! Why? What are the processes that drive the atmosphere away from therody-
namic equilibrium?

Figure 2: Typical change of temperature with height. From
http://www.windows2universe.org/earth/Atmosphere/troposphere temperature.html

Note that if a multicomponent system is considered including phase transitions
an entropy maximization (representing local equilibrium conditions) yields the equi-
librium chemical potentials for the exchanging substances (µl and µk) have to be
equal and constant

µl = µk . (24)

.

Excercises

1. Derive the natural variables and the corresponding Gibbs equations (using Eq.
6) for the enthalpy h = u + pv, f = u − Ts and g = u + pv − Ts Also show
the validity of Eq. 9.

2. Show that the variation of the volume specific total energy ρe obeys Eq. 10
(given that Eq. 5 is valid), and show also that Eq. 12 is valid.

3. Use the hydrosatic equation 23 to derive a relationship between the total mass
of the atmosphere and the surface pressure.
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2 Application to dry air

So far the thermodynamic concepts introduced are fairly general. Now we want to
apply these concepts to the atmosphere. Let us first consider a truely one-component
gas, then Eq. 6 is

du = −pdv + Tds . (25)

Two more equations (usually the easily measurable relationships between T , p, v
and u) are needed to completely characterise such a one-component system. Such
equations are usually referred to as equations of state, and is dependent on the
material considered. The ideal gas law is one of the equations of state. If the one
component gas occupies the volume V we have

pV = NkT = νR∗T , (26)

where k = 1.3806×10−23J K−1 is the Boltzmann’s constant, N is the number of iden-
tical molecules, ν is the number of moles of gas, and R∗ = Nak = 8.341J mol−1K−1

is the Universal gas constant. Na = 6.022× 1023 mol−1 is Avogadro’s number, that
is the number of molecules per mole of gas. If we divide Eq. 26 by the total mass
M , we get

pv = RT , (27)

where R = Nk/M = νR∗/M = R∗/Mm is the specific gas constant Mm = M/ν is
the molar mass. Before we consider the atmosphere as a mixture of gases, it is useful
to derive some relationships between thermodynamic variables for a one-component
gas.

With the equation of state 27 one more equation is needed to solve Eq. 25 that
specifies the dependence of u on T and v. It turns that the internal energy for an
ideal gas just depends on temperature in the following way

u(T ) = cvT , (28)

where the constant cv is called the specific heat at constant volume for historical
reasons (it should really be referred to as partial derivative of internal energy with
respect to temperature). From Eq. 28 follows for the specific enthalpy of a ideal
gas because of h = u + pv = (cv + R)T = cpT , where cp is called specific heat at
constant pressure, also for historical reasons.

With the ideal gas law 27 and Eq. 28 the Gibbs Eq. 25 we can show the following
relationships (exercise!)

s(T, v) = sB + cv ln

(
T

TB

)
+R ln

(
v

vB

)
(29)

or

s(T, p) = sB + cp ln

(
T

TB

)
−R ln

(
p

pB

)
, (30)
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where the subscript B indicates an arbitrary constant thermodynamic reference
value. For the following considerations it is also useful to calculate Gibbs free energy
g = h− Ts. It follows:

g(T, p) = T

[
cp − sB − cp ln

(
T

TB

)
+R ln

(
p

pB

)]
, (31)

Let us now assume that the atmosphere is a well mixed system of ideal gases. Al-
though phase transitions may occur, for many purposes the dry atmosphere may be
considered well mixed system of gases with mi = const. For the typical composition,
see Table 3.

Figure 3: Composition of dry atmosphere at surface level. Source:
http://wpscms.pearsoncmg.com/au hss brown chemistry 1/57/14649/3750278.cw/
content/index.html

According to Dalton’s Law each gas in the mixture obeys its own equation of
state and behaves as if is was alone in the volume V .

pi =
MiRiT

V
= ρiRiT = ρmiRiT , (32)

where pi is the partial pressure of the component i and Ri is the specific gas constant
for that component (see Table 3). Note that the temperature in the infinitesimal
volume of well mixed (and thermally equilibrated) gases is just T and recall the
definition of mass fraction mi = ρi/ρ. From Dalton’s law we can add the partial
pressures to get the total pressure

p =
n∑

i=1

pi = ρ
n∑

i=1

miRiT = ρRT , (33)

11



where R =
∑n
i=1miRi = 287 J kg−1K−1 is the specific gas constant for dry air. The

complete thermodynamc treatment of an ideal gas mixture starts from the Gibbs
free energy 7 with the fundamental equation 8. A mixture of ideal gases can be
described according to 7 as

g(T, p,mi) =
n∑

i=1

miµi , (34)

this is we can add up the specific gibbs free energy (or chemical potentials). In
general µi = µi(T, p,mi), however for an ideal gas mixture these relationships de-
generate to

µi(T, p,mi) = µi(T, pi) , (35)

which can be interpreted as a consequence of Dalton’s Law (each component behaves
as if it was alone in the volume if we consider the partial pressures), thus we have

µi(T, pi) = T

[
cpi − SB − cpi ln

(
T

TB

)
+Ri ln

(
pi
pB

)]
, (36)

where we have used the relationship of the one-component gas for each component
by replacing p by pi, as well as the respective heat capacities and gas constants.
Using

pi = p
miRi
R

:= pyi , (37)

where obviousely
∑n
i=1 yi = 1. The yi = miRi/R = νi/ν may be interpreted as

molar fractions of the respective component. Inserting this into 36 leads to

µi(T, p, yi) = T

[
cpi − SB − cpi ln

(
T

TB

)
+Ri ln

(
p

pB

)
+Ri ln yi

]
, (38)

therefore

g(T, p,mi) =
n∑

i=1

miT

[
cpi − sB − cpi ln

(
T

TB

)
+Ri ln

(
p

pB

)
+Ri ln yi

]
. (39)

This tells us that apart from the Gibbs free energy of the well mixed gas (first 2
terms), there is a mixing Gibbs free energy (last term). From Eq. 8 we know that
the entropoy can be calculated as negative partial derivative of free energy, therfore

s = − ∂g
∂T

= −
n∑

i=1

mi

[
cpi − sB − cpi − cpi ln

(
T

TB

)
+Ri ln

(
p

pB

)
+Ri ln yi

]
. (40)

Therefore

s = sB +
n∑

i=1

micpi ln

(
T

TB

)
−

n∑

i=1

miRi ln

(
p

pB

)
−

n∑

i=1

miRi ln yi . (41)
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If the definition of the specific entropy of the well mixed gas

si = sB + cpi ln

(
T

TB

)
−Ri ln

(
p

pB

)
(42)

is made, then we see that apart from the entropy of the well mixed gas,
∑n
i=1misi,

there is an additional term for entropy in a gas mix

s =
n∑

i=1

misi −
n∑

i=1

miRi ln yi . (43)

the term

smix := −
n∑

i=1

miRi ln yi (44)

is called mixing entropy and is always positive because of yi < 1. The existence of
the mixing entropy is clearly due to the fact of the nonlinear dependence of entropy
on pressure and temperature; (explain the meaning of mixing entropy for a mixture
of 2 separated gases in volumes V1 and V2). Note that since we assume the dry
atmosphere to be a well mixed gas, we also assume that the mass fractions mi are
constant for all components and therefore the mixing entropy is also constant (after
the mixing!) and therefore this term can be combined with the constant sB and with
this we have the entropy according

∑n
i=1misi and 43 as for the one-component ideal

gas Eq. 30 (or 29). For the enthalpy of the mixture we have because of h = g + Ts

h =
n∑

i=1

miT

[
cpi − sB − cpi ln

(
T

TB

)
+Ri ln

(
p

pB

)
+Ri ln yi

]
+

T

[
sB +

n∑

i=1

micpi ln

(
T

TB

)
−

n∑

i=1

miRi ln

(
p

pB

)
−

n∑

i=1

miRi ln yi

]

=
n∑

i=1

micpiT . (45)

Therefore the enthalpy is additive h = cpT =
∑n
i=1micpiT =

∑n
i=1mihi, with

hi = cpiT , and there is no mixing enthalpy. It turns out that also internal energy
can additively composed from the subsystems u = cvT =

∑n
i=1micviT =

∑n
i=1miui.

For the Earth atmosphere with the gases listed in Table 3, we have cv =
∑n
i=1micvi =

717 J kg−1K−1 For the specific enthalpy we have h = u + pv = (cv + R)T = cpT ,
where cp := cv +R = 1004 J kg−1K−1.

In atmospheric physics and dynamics it is convenient to consider a quantity
closely related to entropy, but with the dimension of temperature, the potential
temperature. It can be defined as

ds = cp d ln θ or s = cp ln θ + const. (46)

It is usually derived as a process for which ds = 0, if ds is the total derivative
following the particle. This is a stronger statement than that the global entropy is
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constant (Eq. 16) and such a process is usually referred to as adiabatic reversible
(i.e. no heat is exhanged between the parcel and its environment; no heatflux).
Consider the specific enthapy h, its derivative is

dh = vdp+ Tds (47)

Because of ds = 0, from Eq. 47 follows

T

T0
=

(
p

p0

) R
cp

. (48)

If we let p0 = 1000hPa, the the interpretation of T0 would be that it is the temper-
ature that a particle would reach if it is adiabatic reversibly brought to the pressure
p0, which approximately the surface. This temperature is then called potential tem-
perature θ, and can be expressed as

θ = T

(
p

p0

)− R
cp

. (49)

In expression 49 the potential temperature θ is obviousely not constant. Comparing
this with the expression for the entropy 30, we can easily verify the validity of 46,
which means that entropy is a function of potential temperature alone and vice versa
(excercise!). Fig. 12 shows a typical potential temperature distribution with height.
Whereas temperature is typically decreasing with height, potential temperature (and
therefore entropy!) is typically increasing with height. We will see in the next section
that this is necessary if the dry atmosphere is in a stable condition.

Exercises

1. Assume the atmosphere has an initial density-weighted mean temperature of
270 K and a density-weighted mean kinetic energy of 100 m2/s2. Assume now
that we close the atmosphere and all kinetic energy is dissipated. Calculate
the resulting constant thermodynamic equilibrium temperature, T0 of the final
state in which entropy is maximal. (Hint: Note that the density-weigted mean
can be evaluated as

ψ :=

∫
ρψ dv∫
ρ dv

=
1

M

∫
ρψ dv ,

where the integrals are done over the whole atmosphere. Note that the volume
integral of the potential energy is just R/cv times the integral of the internal
energy, and you may use this without proof.)

2. Use the ideal gas law 27, Eq. 28 and Eq. 25 to calculate the dependence of
entropy s on a) temperature and volume and on b) temperature and pressure.

3. Show that the potential temperature definition 49 is consistent with Eq. 46,
with the entropy s of an ideal gas given by expression 30.
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Figure 4: Idealised situation (meridional-vertical section) of the extratropical mean
state. Potential temperature (solid lines, K) and zonal wind (dashed, m/s). As
you know the wind approximately fulfills the thermal wind equation ∂ug/∂z ≈
−g/(fT ) ∂T/∂y.
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3 Moist Atmospheric Thermodynamics

In the previous sections the Atmosphere has been considered as a well-mixed perfect
gas. Now we will introduce the water in the atmosphere. Water is special, because
it can exist in its 3 phases: solid, liquid and vapour. Furthermore water vapor is
anything but a well mixed gas and shows large spatial and temporal variations (see
Fig. 5 for specific humidity or mass fraction; discuss distribution, why? Discuss
magnitudes). Water in all phases is far from thermodynamic equilibrium mainly
because there is the huge reservoir of the oceans that provide water to the atmosphere
via evaporation and receives water via precipitation (section 3.3.1; see Fig. 8; discuss
distribution, dimension). From Eq. 6 we know that in principle we should include
in the thermodynamic description the additional variables of mass fractions mi (or
the densities) for dry air, water vapor, liquid and solid phases of water, where one
follows from the other 3 because of

∑4
i=1mi = 1 by definition. Therefore, the full

description of such a system involves n+ 4 = 8 natural variables, for which balance
equations have to be established (momentum, thermal energy and mass continuity
equations for total density and the 3 additional components). Of course, in principle
even more components can be distinguished, such as ozone and other reacting gases.
For the time being, the water components are considered, because they provide
the most important feedbacks. However, in details the treatment of water in the
atmosphere is already quite complicated.

It is first useful to discuss the effects of moisture in unsaturated air.

3.1 Moist unsaturated air

All air in the atmosphere contains some water vapor, but it is usually a very small
fraction (up to 4%, but usually smaller, see Fig. 5). If in a volume, we have dry air
with density ρd = Md/V and water vapor ρv = Mv/V then we have for the densities

ρ =
Md +Mv

V
= ρd + ρv . (50)

Therefore for the mass fractions md = ρd/ρ = Md/M , mv = ρv/ρ = Mv/M we have

1 = md +mv . (51)

Note that the mass fraction of vapor, mv, is called specific humitity. We can now
apply Daltons law 32 to water vapor as ideal gas if we are not near condensation

pv = ρvRvT , (52)

where pv is the partial pressure of vapor and Rv = 461.5Jkg−1K−1 is the specific
gas constant for vapor and we have assumed that the vapor temperature is equal to
the temperature T . The dry air equation of state is

pd = ρdRdT , (53)
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Figure 5: Near surface distribution of specific humidity (vapor mass fraction). Units
are g/Kg.

where we have indicated dry air by the subscript d, but Eq. 53 is identical to Eq.
27. From Dalton’s law 33 we can add the partial pressures

p = pd + pv = (ρdRd + ρvRv)T

= ρdRd

(
1 +

r

ε

)
T , (54)

where the mixing ratio r = ρv/ρd and the definition ε = Rd/Rv = 0.621 = 1/1.61
have been introduced. With ρd = ρ/(1 + r) it follows

p = ρRd

(
1 + r

ε

1 + r

)
T . (55)

It is clear that the gas ’constant’ of moist air is

R = Rd

(
1 + r

ε

1 + r

)
. (56)

However, is is not a ’constant’ anymore because it depends on the vapor mixing
ratio, which is highly variable. Therefore, the virtual Temperature has been intro-
duced in atmopspheric physics to take into account the moisture correction into the
temperature

Tv = T

(
1 + r

ε

1 + r

)
, (57)
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so that we have for moist air the gas law

p = ρRdTv . (58)

It will be an exercise to estimate a typical valus of the deviation Tv − T due to the
vapor in the atmosphere.

3.2 Specific heat of moist air

Moisture is also modifying somewhat the specific heat that we have for dry air. For
an ideal gas mixture can add the internal energies according to the mass fractions
by (see section 2; use mv = r/(1 + r))

u = mdud +mvuv = (mdcv +mvcvv)T = cv

(
1 + cvv

cv
r

1 + r

)
T , (59)

such that the specific heat at constant volume of moist air c′v can be expressed as

c′v = cv

(
1 + cvv

cv
r

1 + r

)
, (60)

where cvv = 1410Jkg−1K−1 is the specific heat of water vapor. A similar calculation
for the enthalpies leads to

c′p = cp

(
1 +

cpv
cp
r

1 + r

)
. (61)

cpv = 1870Jkg−1K−1 is the specific heat at constant pressure of water vapor. In
practise, the differences of the specific heats of moist and dry air is often neglected
because of r � 1.

3.3 Saturated air; Clausius Clapeyron Equation

For saturation, the vapor and liquid (or solid) phases are in equilibrium. Let us for
the time being just consider water vapor and the liquid phase. Saturation occurs
when as many molecules leave the water surface as are absorbed by the water surface
(Fig. 6).

Equilibrium means that the pressures and temperatures, as well as the Gibbs
free enthalpy (or chemical potentials for just one component) are equal for the 2
pure phases (section 1.4; Eq. )

µl = µv , pl = pv , Tl = Tv , (62)

or
dµl = dµv , dpl = dpv , dTl = dTv , (63)
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Figure 6: Evaporation (condensation) from a water surface.

For each of the pure phases we have the Gibbs equation

dµi = −sidT + vidp , (64)

where i = v, l, Note the vi are the specific volumes vi = Vi/Mi for the phases. Thus

(sl − sv)dT = (vl − vv)dp , (65)

where T and p are the temperature and pressure. If we use the equilibrium condition
Eq. 65 to define the saturation vapor pressure psv, then we have

dpsv
dT

=
sl − sv
vl − vv

. (66)

The ’heat’ transfered during the phase transition is usually referred to as enthalply
of condensation or as latent heat of condensation and is

Llv := hv − hl = T (sv − sl) + (µv − µl) = T (sv − sl) . (67)

Llv is a function of temperature, but for meteorological purposes it can be approxi-
mated to a constant. Therefore

dpsv
dT

=
Llv

T (vv − vl)
. (68)
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This is the Clausius-Clapeyron equation specifying the temperature dependence of
the saturation vapor pressure. If we use vv � vl and the equation of state for water
vapor (with pv = psv)

psvvv = RvT , (69)

because the gas phase is only vapor (Vv = V ), and therefore we have

1

psv

dpsv
dT

=
Llv

psvTvv
=

Llv
RvT 2

. (70)

Integration of this equation between psv0, T00 and psv, T using the approximately
valid assumption Lvl = const= 2.5008 ·106 J kg−1 leads to

psv = psv0e
Llv

RvT00 e−
Llv
RvT . (71)

We can immediately derive the formula for the phase transition vapor-ice by using
the latent heat of sublimation Liv = 2834.1 ·106 J kg−1 instead of latent heat of
condensation

psvi = pvs0e
Liv

RvT00 e−
Liv
RvT . (72)

For the constants of integrations we choose freezing point T00 = 273.15K, where the
corresponding saturation vapor pressure is pvs0 = 6.11 hPa. With this we have a
expressions of the type

psv = Ae−
B
T ,

for the saturation pressure over water and ice and equations 71 and 72 indicate that
air can only ’hold’ a limited amount of water, and that this amount is a strong
function of temperature (see Fig. 7).

If we have a mix of gases, as in the case of moist air, the same equations are
valid, but the pressure pure psv becomes the partial pressure of water vapor instead
(the pressure exerted by the dry air can be ignored).

3.3.1 Parametrization of evaporation over pure water surfaces

Assume now that the we have air over a water surface. In case the air is not
saturated if the partial water vapor pressure is smaller that its saturation values
pv < pvs, evaporation from the water surface will occur. This process is usually
parameterized in a way that the evaporation rate is proportional to the saturation
deficit of the air pvs − pv. A typical parameterization of the evaporative flux would
be

fevap = cevap (pvs − pv) , (73)

where cevap are usually empirical coefficients that usually depend on wind speed in
the atmosphere and other properties, such as stability (usually for practical purposes
in numerical models of the atmopshere/ocean these cannot be derived from micro-
scopic (molecular) properties). Many models of the atmosphere use the vapor mass
fraction (specific humidity) as variable, therefore it is an advantage to express the
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Figure 7: Saturation presssure versus temperature. Sourse: http://www.goes-
r.gov/users/comet/tropical/textbook 2nd edition/print 5.htm

evaporation rate fevap in terms of difference in specific humidity and the saturation
specific humidity. Since pv = ρmvRvT , and with the definition of the saturation
specific humidity mvs := pvs/(ρRvT ) we can express Eq. 74 as

fevap = c∗evap (mvs −mv) , (74)

where c∗evap = cevap/(ρRvT ). The convergence of the evaporation rate (flux) should
then increase the atmospheric vapor mass fraction

∣∣∣∣ρ
dmv

dt

∣∣∣∣
evap

= −∇ · (fevapk) = −∂fevap
∂z

, (75)

where we have used that the evaporation from a flat surface has only the vertical
component. Note that the vapor mass flux from the surface may continue into the
the atmposphere and only its convergence will lead to a change in mass fraction
(explain this equation carefully). The convergence of these evaporation fluxes occur
in the atmospheric boundary layer.

3.4 Ways to saturation

A useful measure that indicates if moist air is saturated is the relative humidity

RH =
pv
pvs

=
mv

mvs
, (76)

that is the ratio of partial vapor pressure to saturation vapor pressure or specific
humidity and saturation specific humidity. A way to saturate unsaturated air is to
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Figure 8: Annual mean observed evaporation (top) and precipitation (bottom).
Units are mm/day (note that mm/day is equivalent to kg/(m2 day).

cool the air diabatically (e.g. fog formation at night through radiative surface cool-
ing). The temperature defined by this cooling is defined as dewpoint temperature
Td. If pvs is the measured atmospheric vapor pressure, the dewpoint temperature
is defined by pv(T ) = psv(Td), because the cooling is assumed to take place at con-
stant vapor pressure and we insert the measured vapor pressure of the into Eq. 71
in order to calculate the temperature at saturation Td. An alternative and very im-
portant process to reach saturation is the adiabatic cooling through upward motion.
However, in a rising parcel the vapor pressure it not constant (also decreasing; the
mass fraction is constant), so the calculation of the lifting condensation level LCL is
more complicated and may be derived from thermodynamics diagrams (an example
is the tephigram in Fig. 9; exlain how to calculate LCL through conservation of
mv = Mv/M ; why is mv conserved, is it?). Other important mechnisms to reach
saturation are mixing of air and cooling and moistenting by evaporation of water
(leading to Wet Bulb temperature). We can do a little calculation to show that the
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air is always going to saturate due to the adiabatic cooling if it is lifted high enough.
For a rising parcel we have that its mass fraction mv is conserved. Therefore, the
relative humity change with time for an unsaturated rising parcel will be

dRH

dt
= − mv

m2
vs

dmvs

dt
, (77)

which tells us that in order for the relative humidity to increase in the rising parcel,
the saturation specific humidity has to decrease. We have the saturation specific
humidity

mvs =
psv
ρRvT

=
psvR

ρRTRv
= εpsv/p , (78)

where the definition ε = R/Rv that has been used in Eq. 54 has been used (always
approximating Rd = R). From Eq. 78 we can calculate

dmvs

dt
=

ε

p

dpsv
dt
− εpsv

p2

dp

dt

=
εpsv
p

(
Llv
RvT 2

dT

dt
+ w

ρg

p

)

= mvs

(
Llv
RvT 2

dT

dt
+ w

ρg

ρRT

)

= mvs

(
Llv
RvT 2

dT

dt
+ w

g

RT

)
, (79)

where it has been assumed that the pressure change is hydrostatic. We have that
the saturation specific humidity is decreasing with height if

dT

dt
= −w g

cp
< −wgRvT

RLlv
or Γd =

g

cp
>

gT

εLlv
, (80)

where we have used that for the rising parcel the lapse rate is (nearly) the dry
adiabatic one as long as the parcel is not saturated, which follows from dθ/dt = 0
and the hydrostatic equation (explain!). This condition for the rising parcel is always
fulfilled because we can easily verify that cp < (εLlv)/T ≈ 5000 Jkg−1K−1 for all
reasonable temperatures in the atmosphere. Therefore, an unsaturated rising parcel
will saturate at some point. To estimate the level where saturation occurs, it is best
to use the thephigram (Fig. 9).

3.5 Condensation for a saturated rising parcel

If we consider vertical motion, a parcel may be lifted until it is saturated, then
supersaturation will occur, because the saturation pressure decreases faster than
the parcels vapor pressure (see Fig. 9). If we lift the parcel further, condensation
will occur. Note that a in-depth treatment would involve cloud drop formation
(e.g. for cloud formation usually cloud nuclei are necessary, and their spherical form
modifies the saturation vapor pressure, etc.). This is not a topic of this course.
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Figure 9: Thephigram

Here we provide a highly simplified treatment assuming that supersaturation will
automatically and instantaneousely lead to condensation until the parcel is saturated
again. To evaluate this process, we may write the enthalpy of the moist air with
condensate as (see section 2).

h = mdhd +mvhv +mlhl . (81)

Differentiation of this equation leads to

dh = mddhd +mvdhv +mldhl + hddmd + hvdmv + hldml . (82)

If condensation is the only process for mass fraction changes considered here (i.e. no
local diffusive mixing), then we may assume for the dry air dmd = 0, for the phases
of water we have dml = −dmv, therefore

dh = mddhd +mvdhv +mldhl + (hv − hl)dmv . (83)
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Therefore we have because of the definition of the latent heat of condensation (67)

dh = mddhd +mvdhv +mldhl + Llvdmv . (84)

From this equation, we can already see that for a given dh the condensation (dmv)
will lead to changes of the temperature of the parcel additional to the other processes
(pressure change in our case), because we have mddhd +mvdhv +mldhl = (mdcp +
mvcpv + mlcl)dT , where cp, cpv, cl are the heat capacities of dry air, vapor and
liguid water, respectively. This addition of heat occurs because of the large value of
Llv.

With md ≈ 1, and mv,ml small we get

dh = dhd + Llvdmv , (85)

for an approximation of the moist enthalpy variation. With dh = vdp + Tds (note
that the term (µddmd + µvdmv + µldml) = 0 because of dmd = 0, dmv = −dml

and 62) we get for adiabatic-reversible processes ds = 0 (our usual assumption for
the rising parcel). Such a process is referred to as saturated-adiabatic, because it
can be reversed as long as the water remains in the air/cloud. If the rain is falling
out, the the process is called pseudo-adiabatic, because the heat released by the
condensation remains irreversibly in the air.

vdp = cpdT + Llvdmv , (86)

or
cp
T
dT − R

p
dp = cpd ln θ = −Llv

T
dmv , (87)

where the potential temperature of dry air 49 has been used as approximation to
the air-water mixture. If condensation occurs in the rising parcel, then dmv ≤ 0
it follows that the condensation process is increasing the potential temperature of
the rising parcel though latent heating. Note, that the approximation 87 is used
in many numerical models to represent the process of condensation. The change
due to condensation dmv is parameterized in some ways, e.g. if there is supersatu-
ration it is assumed that the condensation removes the water vapor with a certain
time scales until the parcel is saturated again. An extremely simple condensation
parameterization would be

∣∣∣∣
dmv

dt

∣∣∣∣
condlift

= −mv −mvs

τ
(88)

where τ is a time-scale empirically derived. Such a parameterization is used in
some numerical models for large-scale precipitation (as opposed to convective pre-
cipitation). Of course, a more sophisticated parameterization would involve cloud
microphysics, but we will not treat this topic in this course. For the purpose of
this lecture, it is also useful consider the case that the air is always at saturation,
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any supersaturation leads to instantaneous condensation until saturation is reached
again, which means mv = mvs and Eq. 87 becomes

cp
T
dT − R

p
dp = cpd ln θ = −Llv

T
dmsv , (89)

and this equation can be used to derive the equivalent potential temperature. Note
that the relationships 87 or 193 are of enormous importance for the atmosphere. We
can intepret them as vertical redistribution of ’heat’, because, in the global mean,
the evaporation from the ocean surfaces cool that surface (which is heated, on the
other hand by solar radiation) and the ’heat’ is released in the troposphere through
condensation (see Fig. 8), with following precipitation. The other importance of
Eqs. 87 or 193 lies in driving the large-scale circulations, because we find most of
the condensational heating in the tropical regions, and this gives rise to large-scale
atmospheric motions that will be discussed later in this course.

3.6 Entropy of the mixture

If we ignore the mixing entropy (exercise!) we may calculate the entropy of the
mixture dry air, water vapor and liquid water (see section 2) as

s = mdsd +mvsv +mlsl , (90)

where sd, sv, sl are the specific entropies of dry air, water vapor and liquid water,
respectively. If we calculate the derivative, we get

ds = mddsd +mvdsv +mldsl + sddmd + svdmv + sldml , (91)

and if we assume again only condensational mass fraction changes

ds = mddsd +mvdsv +mldsl +
Llv
T
dmv , (92)

because of Eq. 67. Using the same approximation as for the enthalpy changes we
get

ds = dsd +
Llv
T
dmv , (93)

which leads with Eq. 46 for the dry air to Eq. 87, if we again assume ds = 0.

3.7 Equivalent potential temperature

Assuming again that Llv is a constant, Eq. 193 can be written as

cp
T
dT − R

p
dp = −dLlvmvs

T
− Llvmvs

T 2
dT , (94)

or (
cp +

Llvmvs

T

)
1

T
dT − R

p
dp = −dLlvmvs

T
. (95)
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The term Llvmvs

T is about 100 and therefore one order of magnitude smaller than
cp, and can be ignored in this first order calculation. We can integrate Eq. 95 by
dropping the term just discussed to get

cp ln
T

T0
−R ln

p

p0
=
Llvmvs0

T0
− Llvmvs

T
. (96)

The reference pressure p0 = 1000 hPa is as for the potential temperature definition.
To define the equivalent potential temperature, θe it is assumed that the vapor is
completely condensed and falls out, therefore mvs0 = 0 as the parcel arrived at the
pressure p0. In this case we have

θe = θe
Llvmvs

cpT . (97)

The equivalent potential temperature θe is a conservative quantity for a pseudo-
adiabatic process, where ds has assumed to be zero, but we have included the latent
heating due to condensation. Note that the equivalent potential temperature is also
a measure of the entropy for the moist saturated ascent given all the approximations
applied during its derivation and we have ds = cpd ln θe (in lecture: calculate loga-
rithm θe according to 97 and differentiate and compare with 93). Note that within
all approximations used here, the saturation mass fraction mvs can be replaced by
the saturation mixing ratio rrs because of mvs = rsv/(1 + rsv). Usually, using rvs is
the more commonly used formulation for θe. Because of Llvmvs

cpT
� 1, Eq. 97 can be

further approximated using a taylor series expansion to

θe = θ

(
1 +

Llvmvs

cpT

)
. (98)

Note that we may evaluate the saturation specific humidity using Eq. 78.

Excercises

1. Assume a specific humidity of mv = 0.02, calculate the virtual temperatur
difference Tv − T according to 57, if T=300K.

2. Assume a evaporation rate of fevap = 10−5kg m−2 s−1 at the surface. Calculate
how much vapor (in kg) is transferred to the whole column of the atmosphere
for a surface of 1 m2 within one day.

27


